首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A water system, consisting of several water mist nozzles, has been installed in a reduced-scale tunnel. Its effectiveness in blocking fire-induced smoke and heat is tested, with and without longitudinal ventilation. A total of 14 fire tests have been carried out, with 250 ml methanol in an iron tray (25 cm × 20 cm) as fuel. Temperatures have been measured by 30 thermocouples, located upstream and downstream of the fire location. The aim is to assess the effectiveness of the water system in preventing smoke spread and in reducing the temperature in the tunnel. Interaction of the water with the fire is avoided. The impact of water pressure, ventilation velocity and nozzle arrangement on the effectiveness in smoke blocking and temperature reduction is discussed. The result confirms that the water system effectively reduces the temperatures and prevents smoke spreading in the absence of longitudinal ventilation. However, strong longitudinal ventilation (0.8 m/s ventilation velocity in the reduced-scale tunnel, corresponding to critical velocity in full-scale (1:10) tunnel) reduces the effectiveness in blocking the smoke spreading by the water system, although the temperature reduction downstream the water system remains in place. Higher water pressure makes the cooling effect stronger, because more and smaller water droplets are injected into the tunnel. For a given level of water pressure level, the impact of the nozzle row configuration is small in the tests.  相似文献   

2.
The safety of a running train on fire in a tunnel is a key issue for rescue operations, and the train velocity is mainly related to its safety. In this study, the relationship between the wind velocity and heat release rate (HRR), temperature field around the train, and flame/smoke pervasion rule were investigated under the conditions of variable train velocity, fire location, and fire source location. Beijing Metro was considered as a typical example, in which the safe velocity was estimated to be ∼41.83 km h−1. Assuming the occurrence of fire at the center of the train, the numerical simulations of the flow field using the sliding grid of CFD were performed for a full-scale tunnel under different HRRs. When the fire source reached to the target section, the velocities of all the monitoring points rapidly increased. The velocities increased as the train tail arrived at the target section. The velocities at the measuring points increased with the increase in height, excluding the value of the position with a distance of 0.025 m from the tunnel ceiling. The average temperature and concentration of smoke in the annular space between the train and tunnel ceiling had the minimum values when the running train on fire moved with a speed of 45 km h−1. Thus, the safe velocity of a subway train on fire should be managed between 41.83 km h−1 and 45 km h−1.  相似文献   

3.
Peatland fires remain a major contributor of environmental problems in Indonesia. Several studies on peat fire suppression have been conducted with multiple methods, such as quarrying, water spray, artificial rain, and foam spray. This research is focused on laboratory scaled experiments of Indonesian peat smoldering fire behaviour and suppression by a water mist system. The peat used in this work was obtained from two different locations, namely Papua and South Sumatra, Indonesia. During the suppression tests, the intensity of the water mist spray was varied by changing the distance between the nozzle and the peat surface. Meanwhile, the time periods of spray were 15 min (short period of suppression) and approximately 2 h for full suppression until the peat fire was extinguished. The peat temperature and the total mass lost during the smoldering reaction were recorded to get the burning rate ratio for each sample. The spread rate of the smoldering process was identified by the changes in the local temperatures of the peat bed. The results show that the spread rate of the smoldering combustion front was affected by particle size and permeability of peat material. The short duration of water suppression failed to extinguish the peat fires. A re-ignition phenomenon was identified due to the persistence of stored heat in the core of the peat. In addition, the total water required to fully suppress both peat fires is about 6 L/kg peat.  相似文献   

4.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

5.
Fire suppression with water spray was investigated, focusing on cases where fuel cooling is the dominant suppression mechanism, with the aim to add a specific suppression model addressing this mechanism in Fire Dynamics Simulator (FDS), which already involves a suppression model addressing effects related to flame cooling. A series of experiments was selected, involving round pools of either 25 or 35 cm diameter and using both diesel and fuel oil, in a well-ventilated room. The fire suppression system is designed with four nozzles delivering a total flow rate of 25 l/min and injecting droplets with mean Sauter diameter 112 μm. Among the 74 tests conducted in various conditions, 12 cases with early spray activation were especially considered, as suppression was observed to require a longer time to cool the fuel surface below the ignition temperature. This was quantified with fuel surface temperature measurements and flame video recordings in particular. A model was introduced simulating the reduction of the pyrolysis rate during the water spray application, in relation to the decrease of the fuel local temperature. The numerical implementation uses the free-burn step of the fire to identify the relationship between pyrolysis rate and fuel surface temperature, assuming that the same relationship is kept during the fire suppression step. As expected, numerical simulations reproduced a sharp HRR decrease following the spray activation in all tests and the suppression was predicted in all cases where it was observed experimentally. One specific case involving a water flow rate reduced such that it is too weak to allow complete suppression was successfully simulated. Indeed, the simulation showed a reduced HRR but a fire not yet suppressed. However, most of the tests showed an under-estimated duration before fire suppression (discrepancy up to 26 s for a spray activation lasting 73 s), which demonstrates the need for model improvement. In particular the simulation of the surface temperature should require a dedicated attention. Finally, when spray activation occurred in hotter environments, probably requiring a combination of fuel cooling and flame cooling effects, fire suppression was predicted but with an over-estimated duration. These results show the need for further modeling efforts to combine in a satisfactory manner the flame cooling model of FDS and the present suggested model for fuel cooling.  相似文献   

6.
7.
Fire detection experiments in a road traffic tunnel were performed in the Runehamar test tunnel 5th–8th March 2007. The Runehamar test tunnel is a full profile road traffic tunnel, 1.65 km long, located outside Åndalsnes, Norway. The goal was to examinate smoke and heat detection systems to determinate what kind of principle best suited for detecting a fire in an early stage. The systems were tested during small Heptane pool fires, varying between 0.16 m2 and 1 m2, giving heat release rates from 0.2 MW to 2.4 MW accordingly, and one car fire of about 3–5 MW, and with wind conditions varying from 1.1 m s?1 to 1.6 m s?1. The size of the fires, were designed to be in the range from impossible to difficult to detect. The results were conclusive. Earliest detection of a car fire, fire starts inside, was by smoke detection given fixed limits (3000 μg m?3). With open pool fires, or immediate flames, continues fibre optical heat detection systems was faster given the limits 3 °C/4 min.  相似文献   

8.
In this study, we have investigated an extinguishing method of a diffusion flame with water vapor produced from a water droplet impacting onto a headed plate, which is called as indirect fire attack. In order to clarify the extinguishing characteristics, the extinguishing experiments of a methane-air diffusion flame have been performed by using a pure water droplet with the diameter of 3.2 mm. The droplet dropped from the height of 400 mm. The wall superheat and the burner height were varied from 0 K to 330 K and from 32 mm to 102 mm, respectively. As a result, under certain wall-heat conditions, the water-vapor vortex ring is formed and visualized by the white water fog. At wall superheat of 150 K, the formation probability of the vortex ring is unity and the extinguishing probability always shows the peak values regardless of the burner height. As a result, it can be said in our study that the wall superheat of 150 K is the most effective value for the indirect extinguishing method.  相似文献   

9.
This work presents smoke measurements and correlations inside and outside of a corridor-like enclosure fires in order to determine the effects of burning on smoke concentrations inside and outside the enclosure. Thirty eight experiments were performed in a three metre long corridor-like enclosure having a cross section 0.5 m×0.5 m, door like openings in the front panel and a gaseous burner located near the closed end. Smoke concentrations were measured at two locations inside the enclosure and also in the exhaust duct of a hood collecting the fire gases from the enclosure. It was found that smoke concentration in the exhaust duct decreased whereas smoke concentration inside the enclosure increased after the flames started moving towards the opening and external burning occurred. This increased smoke concentration inside the enclosure was caused by reversion of the flow pattern inside the enclosure after the flames moved past a point towards the opening. Namely, the flow pattern changed direction behind the flame front in the sense that hot gases in the upper layer were travelling backwards towards the closed end of the corridor thus contributing to smoke increase inside the enclosure. This change of flow pattern was confirmed in all experiments by bidirectional probe velocity measurements in the upper and lower layer as well as by oxygen concentrations and temperature measurements inside the enclosure. These results are useful for CFD validation and specifically applicable for assessing smoke hazards in corridor fires in buildings where smoke concentrations can be much larger than anticipated owing to leakage to adjacent rooms behind a moving flame front.  相似文献   

10.
《Fire Safety Journal》2006,41(5):390-398
The reaction of a fire plume to an applied water spray is crucial to fire suppression. While considerable research has been devoted toward fire plumes without suppression, and some computer simulations of fire suppression have provided insight, little experimental data exist detailing how the structure of a fire plume changes during suppression. Experiments were performed in which 5, 15 and 50 kW gas burner fires were exposed to a spray from one of three spray sources. Flow rates from the nozzles or fire sprinkler ranged from 6 to 106 L/min. Contours of infrared (IR) intensity of the fire plume show that the plume decreases in height and increases in width with the increasing strength of the applied spray. Based on the height of the maximum fluctuations of IR intensity, the thermal plume height decreases with increasing spray strength, but the overall projected area of the plume changes very little. The plume height depends on the ratio of the drag of the droplets on the air to the momentum of the plume, allowing the results to be generalized to typical fire suppression applications.  相似文献   

11.
In the present study, the effect of fine water mist on extinguishment of a methane–air counterflow diffusion flame was investigated to understand the underlying physics of fire extinguishment of highly stretched diffusion flame by water mist. Twin-fluid atomizers were used to generate polydisperse water mist of which Sauter mean diameters were 10, 20, 40, and 60 μm. When water mist is not added, the critical stretch rate at extinguishment is 439 s−1 as compared to the theoretical value of 460 s−1. For the case with water mist addition, when the stretch rate is small enough, almost all the water mist evaporates within the flame zone. On the other hand, for high stretch rate case, large mist droplets pass through the flame zone and can reach the stagnation plane. However, no oscillatory motion was found around the stagnation plane. Critical stretch rate at extinguishment decreases monotonously with the mass fraction of water mist independently of the mist diameter within the range of D32 from 10 μm to 60 μm. On the other hand, with increase in the surface area parameter, the critical stretch rate at extinguishment decreases rapidly and becomes less sensitive at large surface area parameter, of which tendency is qualitatively in good agreement with theoretical predictions. For a constant surface area parameter, the critical stretch rate decreases with mist diameter because the mass fraction of water mist should increase in proportion to the mist diameter to keep the surface area parameter constant. When the water mist evaporates completely in the flame zone as in the present study, the mass fraction of the water mist is the dominant factor for fire extinguishment, rather than the surface area parameter. Therefore, an appropriate combination of stretch rate and water mist mass fraction should be provided to suppress effectively a given fire with a small amount of water mist.  相似文献   

12.
Technical and pure grades of the combustibles heptane and dodecane were used in a series of small-scale fire tests conducted in a 1 m3 compartment that was mechanically ventilated at 5 and 8 air changes per hour (ACH). Combustible mass loss rates, soot mass concentrations, soot size distributions, several gas species concentrations, and compartment temperatures were measured during the fire. Results for the two pure-grade hydrocarbons were compared with results obtained for their respective technical grades. Technical-grade dodecane produced the highest soot emissions; pure n-heptane produced the lowest. Soot size distributions of all four combustibles attained a steady profile whose modal diameter was about 200 nm. Underventilated fires showed higher carbon monoxide yields than soot yields. Both compartment ventilation rates produced similar results, although the fire self-extinguished earlier for 5 ACH.  相似文献   

13.
Among tunnel fire safety strategies, evacuation speed in smoke, which is the basic evacuation performance characteristic, is one of the most important factors when assessing safety. An evacuation experiment in a full-scale tunnel filled with smoke has been done in order to clarify the relation between extinction coefficient up to Cs = 1.0 m−1, which includes Cs = 0.4 m−1 as a Japanese road tunnel fire prevention standard, and evacuation speed. The maximum, minimum and mean values of normal walking speeds are almost constant regardless of the extinction coefficient. As for the emergency evacuation speeds, the maximum speed is largely influenced by extinction coefficient, decreasing rapidly from 3.55 m/s at Cs = 0.30 m−1 to 2.53 m/s at Cs = 0.75 m−1 while the minimum and mean speeds are almost constant with a slight decrease as Cs increases. The maximum evacuation speed trends in the present experiments and those in Frantzich and Nillson (2003, 2004) and Fridolf et al. (2013), lie on the same decreasing logarithmic curve as a function of extinction coefficient.  相似文献   

14.
The objective of this work is to propose an effective modeling to perform predictive simulations of pool fires in mechanically ventilated compartments, representative of a nuclear installation. These predictive simulations have been conducted using original boundary conditions (BCs) for the fuel mass loss rate and the ventilation mass flow rate, which depend on the surrounding environment. To validate the proposed modeling, the specific BCs were implemented in the ISIS computational fluid dynamics (CFD) tool, developed at IRSN, and three fire tests of the PRISME-Door experimental campaign were simulated. They involved a hydrogenated tetrapropylene (HTP) pool fire in a confined room linked to another one by a doorway; the two rooms being connected to a mechanical ventilation system. The three fire scenarios offer different pool fire areas (0.4 and 1 m2) and air change rates (1.5 and 4.7 h−1). For the one square meter pool fire test, the study presents, in detail, the effects of the boundary conditions modeling. The influence of the ventilation and fuel BCs is analyzed using either fixed value, or variable, function of the surrounding environment, determined by a Bernoulli formulation for the ventilation mass flow rate and by the Peatross and Beyler correlation for the fuel mass loss rate. The results indicate that a full coupling between these two BCs is crucial to correctly predict the main parameters of a fire scenario as fire duration, temperature and oxygen fields, over- and under-pressure peaks in the fire compartment. Variable BCs for ventilation and fuel rates were afterward both used to predictively simulate the fire tests with a pool surface area of 0.4 m2. The predicted results are in good agreement with measurements signifying that the model allows to catch the main patterns characteristic of an under-ventilated fire.  相似文献   

15.
This paper presents an experimental investigation on the transverse ceiling flame length and the temperature distribution of a sidewall confined tunnel fire. The experiments were conducted in a 1/6th scale model tunnel with the fire source placed against the sidewall, 0 m, 0.17 m and 0.35 m above the floor, respectively. Experiments of fire against a wall without a ceiling, 0.35 m above the floor in a large space, were also conducted as a control group. Results shows that for small heat release rate (HRR), the flame is lower than the ceiling and extends along the sidewall. With the increase of HRR and elevation of burner height, the flame gradually impinges on the ceiling and spreads out radially along it. The flame impingement condition and the flame shapes of the wall fire with and without ceiling are presented. From the viewpoint of the physical meaning of flame impinging on the ceiling, the horizontal flame length should be a function of the unburned part of the fuel at the impinging point. Based on the proportional relation between the flame volume and HRR, the effective HRR (Qef) at the ceiling is determined and the effective dimensionless HRR, Q*ef is defined to correlate the horizontal ceiling flame length. Additionally, predictive correlations of transverse ceiling temperature distribution are proposed for the continuous flame region, the intermittent flame region and the buoyant plume region under the ceiling, respectively.  相似文献   

16.
Naturally ventilated urban vehicular tunnels with multiple roof openings have increased in China. Unnecessary gas (polluted air or fire smoke) are expected to be exhausted out through openings. Whether its safety standards can be satisfied or not still needs to be verified. In this paper, a safe CO concentration was firstly discussed, and a heat risk level of very high to extreme up to 46 °C was given. Secondly, a real 1410 m tunnel was proposed, and a 1/10 scale model tunnel was reproduced. Ambient winds of 0.95 m/s in prototype and 0.3 m/s in model were considered. Under normal traffic test, a track circuit was constructed with model vehicles moving on it to form traffic wind, and once the air velocity was larger than 0.31 m/s, the airflows were found to be not relevant to the Reynolds number. The traffic winds were weakened by openings. For three of all tested traffic, the actual air velocities were larger than the required ones, so its air qualities were satisfied. In firing test, two sets of burning experiments were conducted with which the heat release rates (HRR) were 8.35 kW and 13.7 kW. Large amounts of smoke were exhausted out of openings, and the high-temperature was not significant. Full-scale numerical simulations were carried out to verify the experimental results respectively using Fluent 6.0 for normal traffic and FDS 4.07 for firing. The simulations were compared well with the experiments. Further FDS simulations show that the openings’ mass flow rates are influenced little by ambient temperature; with the increasing length of the buried section, much smoke accumulate inside leading to a high temperature; having 4–5 openings in one shaft group is oversize in the actual engineering design.  相似文献   

17.
The efficiency of a firebreak, built in a shrubland has been studied numerically using a multiphase physical model. The physical mechanisms governing the propagation of the surface fire and the consequences upon the temperature signal and the radiative heat flux received by a target located at 1 m above the ground level, have been firstly studied before positioning the firebreak. The role played by the flame and the recirculation of hot gases to the ignition of unburned fuel (especially the dry grass) ahead of the fire front have been clearly identified. Four values of the firebreak width LC (ranged between 5 and 20 m) and 3 values of wind velocities (ranged between 1 and 8 m/s) have been tested. The simulations show that above a threshold value of this parameter, even if a small amount of the fuel located on the opposite side of the firebreak was ignited, the released energy was not sufficient to sustain the propagation of the surface fire after crossing the firebreak.  相似文献   

18.
Insulation panels made of organic, combustible materials are frequently used in the exterior thermal insulation systems (ETIS) for buildings. Such combustible insulation panels have been involved in several catastrophic building fires in recent years in China. One potential strategy to mitigate this fire hazard is to limit fire spread over the ETIS. The present work evaluates the effectiveness of vertical fire barriers in inhibiting fire spread over exposed insulation walls made of expanded polystyrene (EPS) panels. Reduced-scale experiments were carried out indoors using EPS panels with or without two vertical barriers made of non-combustible mineral wool, the fire started at the bottom center of the middle panel. The interval and width of the barriers were varied systematically, while the temperature distribution on the wall, the radiation heat flux from the fire, and the infra-red (IR) images were recorded. To demonstrate the validity of the concept, an outdoor, full-scale experiment was carried out using a 7-floor building. Our reduced-scale experiments showed that the installation of two vertical fire barriers successfully stopped the lateral flame spread, decreasing the peak temperatures of the two side panels by about 300 °C for all barrier configurations tested. When barrier width was fixed at 5 cm, an increase of the barrier interval from 30 to 90 cm led to increases in the peak temperatures, radiation heat flux, and the maximum rate of upward flame spread. By contrast, when barrier interval was fixed at 90 cm, an increase of the barrier width from 2 to 5 cm had little influence on the combustion dynamics of the middle panel but the peak temperature on the side panels dropped, consistent with the smaller heat transferred with wider fire barriers. In the regions of the side panels next to the barriers, pyrolysis and deformation could be observed with barrier widths of 2 and 3 cm, but not 5 cm. Finally, our outdoor, full-scale experiment demonstrated that a 30 cm wide vertical barrier made of air-filled cement successfully stopped the lateral flame spread over exposed EPS wall. The study highlights the effectiveness of vertical fire barriers in preventing the lateral flame spread over the exposed EPS insulation wall and provides another option for enhancing the fire safety of the combustible insulation systems.  相似文献   

19.
The influence of additives on the interaction between radiation from fires and single water droplets has been investigated in detail. A literature study was performed on available information of radiation spectra from different types of fires. Based on this, four reference spectra were proposed that cover most of the different types of radiation that can be expected from fires. These reference spectra were used to compare the effect of different water additives and droplets sizes.Using Mie-theory it was found that increased atomization, down to a diameter limit of 1–10 μm, gives a better volumetric absorption efficiency. Decreasing the diameter further does not lead to improved volumetric absorption since the Rayleigh (small droplet) limit is reached, where the volumetric absorption is independent of diameter.Different additives were investigated with respect to increased absorption in the droplets. It was found, however, that it is not trivial to find non-flammable and non-toxic additives that give a significant improvement in absorption. Carbonated water was a potential candidate but the increased absorption was limited to a very weak band centered at 2300 cm−1. Since this coincides with the strong CO2 emission band an effect could be seen when carbonated water interacted with radiation from clean flames. The maximum increase in volumetric absorption for carbonated water was 4%, occurring for a droplet diameter of 10 μm. Other additives gave better effects but they were either combustible (carbon nanopowder) and/or toxic to some degree.  相似文献   

20.
This paper presents findings obtained by CFD modelling for simulating the effects of fire due to different vehicle types in a bi-directional road tunnel. Four different burning vehicles placed in the centre of the driving lane at tunnel middle length were considered. Peaks of the heat release rate (HRR) of: 8, 30, 50, and 100 MW were simulated for the two cars, the bus, the heavy goods vehicle (HGV), and the petrol tanker, respectively. The fire effects on tunnel structure and on environmental conditions along people evacuation path were especially evaluated. The effects of the traffic jam, in contrast with the isolated vehicles, on temperatures, radiant heat flux, visibility distance, and toxic gases concentrations, were also investigated. The worst scenario was identified to be that pertaining to the petrol tanker and more critical conditions were also found when the tunnel was full of vehicles. The maximum gas temperatures reached in the presence of traffic at the side wall (and at the tunnel ceiling reported in brackets) were found to be: 360 °C (170 °C) for the two cars; 740 °C (465 °C) for the bus; 835 °C (735 °C) for the HGV and 1305 °C (1145 °C) for the petrol tanker, respectively. The presence of the traffic, in contrast with the isolated vehicle, involved an increase in the maximum temperatures equal to 16–17% for the two cars, and contained in the range 12–29% with percentages increasing starting from the tanker, to the HGV and to the bus. In other words when the maximum temperatures produced by the isolated vehicle are very high (e.g. for the tanker), the presence of the traffic had a minor effect. With reference to environmental conditions along the evacuation path, the results showed that in the case of petrol tanker fire the emergency ventilation ensures a tenable level of temperature, radiant heat flux, and toxic gases concentrations up to 5 min from the fire starting. This time increases up to 6.5 min for the HGV and 8 min for the bus. This means that the tunnel users in order to be safe in all scenarios should leave the tunnel within 5 min after the fire starting. Toxic gases concentrations, however, were found to be below the limit values in all cases and also in the presence of traffic. In the light of the aforementioned results, tunnel occupants should be promptly informed of the fire risk and guided to the exit portals. This might be done by equipping the tunnel with illuminated emergency signs located along the tunnel length and by installing traffic lights before the entrances so that the tunnel can be closed in case of emergency. By activating the traffic lights at the portals and the emergency signs (more especially those at the ceiling) at the same time as the emergency ventilation is activated, safer conditions for the people evacuation are expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号