首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
采用碳纳米管阵列(CNTA)与环氧树脂(Epoxy)溶液共混制备CNTA/Epoxy复合材料.将CNTA分散于Epoxy溶液中,在60℃的温度条件下固化4h,将固化后的Epoxy浸润在CNTA薄膜中;CNTA薄膜中的碳纳米管仍然能保持整齐排列,以此提高复合材料沿轴线方向上的热导率.其中,轴线方向为碳纳米管的管轴方向.实验发现,CNTA/Epoxy复合材料的热导率在90℃时提高到2.24 W/(m·K),相当于纯Epoxy热导率的10倍左右.复合材料的电导率仍保持在一个相对较低的值,为10-8 S/cm.CNTA相对于大多数的纳米填料能够显著增强复合材料的热导率,同时能使复合材料保持一定的绝缘性,满足这种热界面材料在电子封装上的应用条件.  相似文献   

2.
环氧树脂(EP)具有优良的综合性能,在电子封装等领域应用广泛,但其自身热导率较低,如何提升环氧树脂的热导率成为了近年来的研究热点。根据制备工艺,目前主要有本征型和填充型两种制备方法。文章综述了填充型导热环氧树脂复合材料研究进展,从填料类别、填料处理方法以及导热机理与路径进行介绍,最后总结了该领域研究的不足,并对其发展趋势进行了展望。  相似文献   

3.
热压烧结法制备钨铜复合材料的工艺研究   总被引:1,自引:1,他引:1  
铜钨复合材料是以铜、钨元素为主的一种两相结构假合金,广泛应用于电接触材料,电子封装和热沉材料.作者研究了采用轴向热压烧结来制备纳米W-15%Cu复合材料的方法,分析了工艺参数对该复合材料性能的影响及其影响机理.实验为获得超细晶粒显微组织和优异均匀性纳米W-15%Cu复合材料提供了重要的实验基础和依据.  相似文献   

4.
离子喷涂W-Cu电子封装材料的组织与性能   总被引:1,自引:0,他引:1  
采用等离子喷涂工艺制备了W Cu电子封装材料,并对该电子封装材料的微观组织和热物理性能进行了研究. 结果表明,在内部送粉条件下,复合材料中钨的收得率要高于外部送粉条件下复合材料中钨的收得率;在内部送粉条件下,功率对铜氧化的影响并不明显;而在外部送粉条件下,随着功率的提高,铜的氧化明显增多;由于氧化物和孔隙等的存在,利用大气等离子喷涂工艺制备的复合材料的导热率远远低于根据混合法则计算的理论值. 这为后续实验研究提供了重要的参考依据.  相似文献   

5.
采用等离子喷涂工艺制备了W-Cu电子封装材料,并对该电子封装材料的微观组织和热物理性能进行了研究.结果表明,在内部送粉条件下,复合材料中钨的收得率要高于外部送粉条件下复合材料中钨的收得率;在内部送粉条件下,功率对铜氧化的影响并不明显;而在外部送粉条件下,随着功率的提高,铜的氧化明显增多;由于氧化物和孔隙等的存在,利用大气等离子喷涂工艺制备的复合材料的导热率远远低于根据混合法则计算的理论值.这为后续实验研究提供了重要的参考依据.  相似文献   

6.
提出一种基于快速成型技术的制备钼/铜复合材料的新方法.采用包覆树脂膜低温粉碎研磨制粉的方法,得到了适于选择性激光烧结快速成型用覆膜钼粉;进行了选择性激光烧结成型实验研究,获得优化的工艺参数;开发了高温烧结钼骨架结合渗铜的成型件后处理工艺,得到钼/铜复合材料样件.用扫描电镜(SEM)观察发现,材料中条形钼相组织主要是由多边形的晶粒结合体构成,铜已经与钼紧密结合在一起,形成钼/铜复合材料,其中只有微量孔隙.对材料进行了主要的力学、热学性能测试计算,分别为:常温抗拉强度470 MPa,弹性模量267.8 GPa,延伸率15%,线膨胀系数5.5× 10-6/K.钼/铜复合材料快速制备工艺可应用于兵器弹箭、航空武器等装备的高温零部件和电子工业高电导散热元件的制造.  相似文献   

7.
聚合物基纳米复合材料热导率计算   总被引:3,自引:0,他引:3  
讨论了聚合物基高导热高绝缘纳米复合材料的导热机理与常用的导热理论模型。考虑到填充率、温度等的影响,用不同的理论模型计算了氧化铝纳米颗粒填充环氧树脂的热导率,并结合相关研究实验对不同的导热理论模型进行分析比较。通过添加高导热填料可显著提高聚合物材料的热导率,且热导率随填料填充率的增大而显著增大。热导率随在300 K到373 K的范围内,复合材料的热导率随着温度的升高而增大;而当温度超过373 K,复合材料的热导率则随着温度的升高缓慢下降。  相似文献   

8.
底充胶导热系数预测及对倒装焊温度场的影响   总被引:1,自引:0,他引:1  
根据导热的基本理论和Haiying Li的研究数据拟合出填加了碳纤维、Silica的环氧树脂封装材料的导热系数预测公式,依此公式可预测出相关复合材料的导热系数.利用有限元方法对电子封装倒装焊中不同导热系数的底充胶材料对温度场的影响进行了分析比较.表明高导热系数的底充胶可明显降低在芯片和基板之间的温度差,降低底充胶的热应力,进而提高电子封装的可靠性.  相似文献   

9.
应用于半导体器件的掺杂纳米金刚石膜   总被引:1,自引:0,他引:1  
金刚石膜有着高的热导率、宽禁带、高的介质击穿场强、高的载流子迁移率等优点,是非常理想的半导体材料.本文介绍了掺杂纳米金刚石薄膜作为半导体器件工作层的优点,综述了金刚石p型掺杂和n型掺杂的研究现状,并对影响纳米金刚石薄膜生长的因素进行了探讨.指出了金刚石膜在半导体器件的应用趋势,并对其应用前景进行展望.  相似文献   

10.
金刚石在目前所知的天然物质中具有最高的热导率,在高频、大功率GaN基高电子迁移率晶体管(HEMT)和电路的散热方面极有应用潜力。综述化学气相沉积多晶金刚石衬底的衬底转移技术、单晶金刚石衬底的直接外延技术和纳米金刚石表面覆膜的器件工艺技术在GaN基HEMT器件中的应用研究和发展历程,并分析每种技术的优缺点。  相似文献   

11.
Net-shape forming of composite packages with high thermal conductivity   总被引:1,自引:0,他引:1  
The continuing miniaturization of electronic devices in microelectronics and semiconductors drives the development of new packaging materials with enhanced thermal conductivity to dissipate the heat generated in electronic packages. In recent years, several promising composite materials with high thermal conductivity have been developed successfully for high performance electronic equipment to replace the traditional Kovar and Cu/W or Cu/Mo alloys, such as SiCp/Al, SICp/Cu, diamond/Al and diamond/Cu. However, these materials with high content of reinforcements have not been widely used in packaging field because they are hard to be machined into complex-shaped parts due to their greater hardness and brittleness. So, it is necessary to explore a near-net shape forming technology for these composites. In this paper, a novel technology of powder injection molding-infiltration is introduced to realize the near-net shaped preparation of the composite packages with high thermal conductivity.  相似文献   

12.
The electroless copper deposition on both pure and Cr-coated diamond particles was studied to produce copper/diamond composites for electronic packaging materials. The particles were characterized and the mechanism of product formation was investigated through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). The particle coating thickness was measured using optical micrographs. The diamond particles got uniform coating thickness of copper crystals layers. This method provided an excellent base for the fabrication of metal-based composites using cheap equipments, and was less time consuming, nature friendly and economical compared with other methods of diamond surface metallization.  相似文献   

13.
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.  相似文献   

14.
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.  相似文献   

15.
Spark plasma sintering was used to fabricate Al/diamond composites.The effect of sintering temperature on the microstructure and thermal conductivity(TC) of the composites was investigated with the combination of experimental results and theoretical analysis.The composite sintered at 550℃shows high relative density and strong interfacial bonding,whereas the composites sintered at lower(520CC) and higher(580-600℃) temperatures indicate no interfacial bonding and poor interfacial bonding,respectively.High ...  相似文献   

16.
SiCp/Cu复合材料的热膨胀性和导热性   总被引:4,自引:0,他引:4  
采用热等静压的方法制备了SiCp/Cu电子封装复合材料.材料热膨胀系数(CTE)和导热率的测定表明,增加SiC体积分数和减小SiC颗粒的尺寸有利于降低CTE值;SIC质量分数超过26%这一临界值后,材料导热率会明显下降.减小残余应力有利于降低材料的CTE值.  相似文献   

17.
基于提高吸附床的导热性能,研制一种可涂于吸附床与吸附剂之间降低接触热阻的耐高温耐腐蚀的高导热复合黏结材料。通过稳态试验研究导热填料、稀释剂与偶联剂等因素对复合黏结材料热导率的影响,采用正交试验方法优化复合黏结材料的配制方案。研究结果表明:复合黏结材料的导热性能随着Al2O3导热填料的质量分数的增加而提高,采用10 μm Al2O3导热填料粒子的导热性能略高于采用35 μm Al2O3导热填料粒子的复合黏结材料,10 μm Al2O3导热填料粒子用质量分数8%的偶联剂处理,复合黏结材料的热导率最高。采用适当配比的导热填料、稀释剂与偶联剂能显著提高复合黏结材料的热导率。  相似文献   

18.
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号