首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
An efficient nonlinear 3D finite element model has been developed to investigate the structural performance of composite slim floor steel beams with deep profiled steel decking under fire conditions. The composite steel beams were unprotected simply supported with different cross-sectional dimensions, structural steel sections, load ratios during fire and were subjected to different fire scenarios. The nonlinear material properties of steel, composite slim concrete floor and reinforcement bars were incorporated in the model at ambient and elevated temperatures. The interface between the structural steel section and composite slim concrete floor was also considered, allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the composite beam. Furthermore the thermal properties of the interface were included in the finite element analysis. The finite element model has been validated against published fire tests on unprotected composite slim floor steel beams. The time–temperature relationships, deformed shapes at failure, time–vertical displacement relationships, failure modes and fire resistances of the composite steel beams were evaluated by the finite element model. Comparisons between predicted behaviour and that recorded in fire tests have shown that the finite element model can accurately predict the behaviour of the composite steel beams under fire conditions. Furthermore, the variables that influence the fire resistance and behaviour of the unprotected composite slim floor steel beams, comprising different load ratios during fire, cross-section geometries, beam length and fire scenarios, were investigated in parametric studies. It is shown that the failure of the composite beams under fire conditions occurred for the standard fire curve, but did not occur for the natural fires. The use of high strength structural steel considerably limited the vertical displacements after fire exposure. It is also shown that presence of additional top reinforcement mesh is necessary for composite beams exposed to short hot natural fires. The fire resistances of the composite beams obtained from the finite element analyses were compared with the design values obtained from the Eurocode 4 for composite beams at elevated temperatures. It is shown that the EC4 predictions are generally conservative for the design of composite slim floor steel beams heated using different fire scenarios.  相似文献   

2.
The structural behaviour of the composite slim floor frame as a whole in fire conditions has been investigated. Both the deformation behaviour of the structural members and the mechanical interaction between the members were studied. The additional lateral deformation of the side-column caused by the thermal expansion and the catenary action in the beam in the different fire phase was highlighted. The moment variation in the head of the columns during fire and the variation of the axial force in the heated beam were also investigated. A comparison between the deformation behaviour of the heated beam in the plane frame and the spatial frame indicated the excellent effects of the composite floor slab on the stability of the frame structures in fire.  相似文献   

3.
Most theoretical and experimental research investigating the effect of fire on structures has previously concentrated only on the structural behaviour during the heating stages of the fire, partly due to the fact that internationally accepted standard fire tests only consider this stage of the fire. Evidence from real fires in real buildings has highlighted that the cooling phase of a fire is equally important and it is possible for structures to fail during this stage of the fire even though they have survived the heating stage up to a maximum fire temperature. This paper provides an insight into the behaviour of composite slabs under different fire scenarios considering both the heating and cooling phase of the fire. Extensive test data is presented which shows the redistribution of moments and strains in the deck and steel mesh, together with displacements during the full duration of the fire. The results show that the behaviour of composite slabs is dependent on the heating rate, the maximum temperature reached and the cooling rate. In terms of overall performance, displacements and the temperature on the non-fire side of the slab are important. For the tests presented in this paper it was shown that one fire scenario resulted in the maximum displacement but another fire scenario resulted in the maximum temperature on the unexposed face. In addition the maximum temperature of the unexposed side of the slab and the mesh reinforcement within the slab occurring during the cooling stages of the fire. This highlights the fact that the performance of structures must be checked in design under a range of possible fire scenarios, which must include both the heating and cooling stages of a fire.  相似文献   

4.
According to full-scale fire tests, it is noticed that tensile membrane action within the concrete floor slabs plays an important role in affecting the fire resistance of composite buildings. It is well known that the development of tensile membrane actions relies on the vertical support along the edges of the slab panel. However, there is at present a lack of research into the influence of vertical supports on the tensile membrane actions of the floor slabs. In this paper, the performances of a generic three dimensional 45 m×45 m composite floor subjected to ISO834 Fire and Natural Fire are investigated. Different vertical support conditions and three steel meshes are applied in order to assess the impact of vertical supports on tensile membrane action of floor slabs. Unlike other existing large scale modelling which assumes the connections behave as pinned or rigid for simplicity, two robust 2-node connection element models developed by the authors are used to model the behaviour of end-plate and partial end-plate connections of composite structures under fire conditions. The impact of connections on the 3D behaviour of composite floor is taken into consideration. The load-transfer mechanisms of composite floor when connections fail due to axial tension, vertical shear and bending are investigated. Based on the results obtained, some design recommendations are proposed to enhance the fire resistance of composite buildings.  相似文献   

5.
约束组合梁抗火试验及理论研究   总被引:3,自引:1,他引:3       下载免费PDF全文
处于整体结构中的构件受到相邻结构构件的约束作用,其火灾中的反应与单个构件具有明显差异。采用约束框架模拟整体结构为组合梁提供约束作用,通过2个组合梁试件研究简支组合梁和连续组合梁的火灾反应。试验表明,在整个火灾过程中,组合梁轴力、挠度及其抵抗弯距相互影响和转化,共同抵抗外荷载作用。在火灾初始阶段,组合梁轴力为压力,削弱了组合梁抗火能力;在火灾中后期,组合梁轴力发展为拉力,挠度可达跨度的1/15,产生的悬链线效应有效提高了组合梁极限抗火能力。简支组合梁和连续组合梁均发生了下翼缘屈曲,下翼缘屈曲是组合梁轴力由压力向拉力的转折点。依据功能原理建立了组合梁下翼缘屈曲的屈服线模型和计算方法,计算结果与试验结果吻合良好。  相似文献   

6.
The National Institute of Standards and Technology (NIST) and the Center for Better Living (CBL) have formed an international collaboration to assess the performance and failure mechanisms of gypsum wall assemblies under real fires/furnace conditions. In an effort to compile an experimental database necessary to validate models that could be used to predict their performance and ultimate failure under various design fires, a full scale test was conducted in the Large Fire Laboratory (LFL) at NIST. This paper provides a valuable experimental data set on the performance of a full scale loaded gypsum steel stud assembly exposed to an intense full scale compartment fire.  相似文献   

7.
Projectiles, such as turbine blades, can be released in an accident and impact structures. Airplanes and other flying objects can also become impact projectiles. These impacts occasionally cause fire when fire loads, such as oil, fuel, and other combustible materials, are present. This study examines the thermal insulation performance of concrete plates and the structural fire behavior of load-bearing reinforced concrete walls that are exposed to fire after a high-velocity impact by a hard projectile. Impact and fire tests were carried out using small-scale concrete plates and reinforced concrete walls. The results show the influence of local damage and the advantage of short-fiber reinforced concrete subjected to impact loads and fire.  相似文献   

8.
传统木结构建筑木构件表面通常采用地仗处理进行保护,而地仗处理对木构件耐火性能的影响规律尚不清晰。为此,通过4组10根三面受火木梁耐火极限的对比试验,研究了截面尺寸、持荷水平、是否地仗处理等因素对木梁耐火极限的影响规律,提出了剩余截面法计算木梁耐火极限,并提出了木梁热力耦合数值分析模型。结果表明,三面受火木梁耐火极限随持荷水平的增加明显降低,当持荷比由30%增加至50%时,木梁耐火极限降低19.6%~31.7%,平均降低17.5min;三面受火木梁耐火极限随截面尺寸增加显著提高,当截面尺寸由100mm×200mm增加至200mm×400mm时,耐火极限提高95.1%~107.8%,平均增加40.0min;木梁表面经一麻五灰地仗处理后,耐火极限提高21.3%~429%,平均提高15.8min。不同持荷水平和截面尺寸木梁内部距离边缘相同位置处的温度变化相近,表面采用一麻五灰地仗处理可显著延缓木梁内部温度的上升速率,木梁两个方向的炭化速度平均值为0.54mm/min,与未作表面处理的木梁相比降低19.4%。基于剩余截面法和数值模拟得到的三面受火木梁耐火极限预测值与试验值的误差在±15%以内,基本满足工程精度要求。  相似文献   

9.
基于一种新型混杂纤维ECC材料研发一种钢 混凝土-ECC组合桥面结构,用于连续组合桥梁的负弯矩区以提升其抗裂性能,可代替其他复杂的工程措施。完成2根钢-混凝土-ECC叠合板组合梁和1根钢-混凝土叠合板组合梁的静力单调加载试验。通过对承载力、刚度与裂缝发展的分析,初步论证混杂纤维ECC用于钢-混凝土组合梁的可行性和优势。试验表明:在纵向受拉钢筋配筋率相等的情况下,采用ECC后浇层的叠合板组合梁在正常使用阶段的承载力略高于对比梁,刚度则高于对比梁且裂缝数量减少、宽度减小;在采用界面拉毛处理后,后浇ECC与混凝土之间的黏结性能良好,界面未出现滑移破坏。基于试验数据和规范方法,提出了含ECC构件的受弯裂缝宽度计算公式,公式计算值与相关试验吻合较好。  相似文献   

10.
The subject of this paper is the analysis of end-plate joints under cyclic and monotonic loading conditions by experimental and analytical studies. The experimental programs are performed on bolted end-plate type joints of composite members under cyclic loading conditions with the purpose to study the seismic response of the considered connection type. The performed experimental research is the second and third steps of an international research project started in 1999 between the Budapest University of Technology and Economics (BME), Hungary and the Technical University of Lisbon (IST), Portugal. The monotonic behavior of the tested joints is followed by the Eurocode standard design method to evaluate the moment resistance and rotational stiffness of the joint. The comparison of the design and the experimental results are performed by the envelope moment-rotation relationships of the hysteretic curves and the design moment-rotation diagram. On the basis of the comparison the modification of the design model is proposed. The monotonic moment-rotation diagram is extended to large rotation regions with the purpose of covering the whole cyclic diagrams until the final failure of the specimen. A semi-empirical method is proposed to approximate the cyclic hysteretic behavior of the studied joints, based on the knowledge of the monotonic moment-rotation curve. This prediction method is based on all the available test results for each behavior mode type (6 tests on steel and 12 tests on composite specimens). The calculated hysteretic curve follows the cycles by polygonal lines taking into consideration the experimental observations. The proposed method establishes the absorbed energy of the consecutive cycles in the case of the studied joint arrangement using standard loading history. The proposed method is applied and verified in the case of each observed failure mode type. By these experimental and analytical investigations the favorable seismic behavior can be derived for the studied joint type.  相似文献   

11.
由腹板开孔且翼缘卷边的H形薄壁钢梁和陶粒混凝土预制板经后浇砂浆和抗剪键组装而成的组合楼板,具有轻质、高强、无需支模、装配化程度高等优势。为研究该类组合楼板的受力性能,对6组不同构造的两边简支组合楼板试件开展静载试验,分析抗剪键分布及薄壁钢壁厚的变化对组合楼板整体受力性能的影响。结果表明:对应等效均布荷载2kN/m2的组合楼板,中心挠度远小于L/500,能够承担的最大荷载值为13.25kN/m2;当混凝土严重开裂且板跨中最大挠度达到L/45时,组合楼板试件并未出现整体塌落;主钢梁上抗剪栓钉的增加,对提高组合楼板的极限荷载和整体刚度均不明显;边梁增设抗剪栓钉对组合楼板的屈服荷载及整体刚度均产生显著影响,当边梁设置与主梁同样的抗剪栓钉时,屈服荷载和整体刚度增幅分别为82.1%和35.6%。  相似文献   

12.
An adjustable steel frame of a steel door, built in a massive brick wall, was subjected to fire according to the international standard ISO 834. Additional thermocouples, with respect to the ones required by the standard, were positioned at different sites of the steel frame cross-section to validate the numerical analysis carried out to study its thermal insulation performance. The leaf/frame interaction was monitored during the fire test to verify the integrity criterion, but was neglected in the calculations by assuming adiabatic conditions at the door clearance. Based on these findings, a parametric study was conducted to investigate the influence of boundary conditions, empty or filled frame cavities, and adjustable versus wrap-around frame on the temperature distribution of the steel frame. Combining the results of fire test and numerical simulation, the possibility to mutually assert the thermal performance, i.e. the insulation criterion for the cases of opening into and opening away from furnace, is discussed.  相似文献   

13.
The numerical simulation of the temperature distribution of a steel door frame subjected to fire has been verified by means of fire resistance tests. For this purpose, a butted steel frame/steel door assembly, built in a massive brick wall, was subjected for at least 30 min to the standard fire of ISO 834 for both opening into as well as opening away from the furnace. The temperature measured on the room side of the frame was compared with the results obtained from numerical heat transfer analysis. The leaf/frame interaction was monitored during both fire tests to verify the fulfilment of the integrity criterion, but was neglected in the calculations by assuming adiabatic conditions at the door clearance. The possibility of mutual assertion of the insulation criterion (thermal performance) for the cases of opening into and opening away from the furnace has been discussed. Additionally, the influences of a thermally insulated frame and of a wall/frame anchorage were quantified by calculations, and comparisons with adjustable steel frames were made.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号