首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi bubbles interaction and merger in a micro-channel flow boiling has been numerically studied. Effects of mass flux (56, 112, 200, and 335 kg/m2 1 s), wall heat flux (5, 10, and 15 kW/m2) and saturated temperature (300.15 and 303.15 K) are investigated. The coupled level set and volume of fluid (CLSVOF) method and non-equilibrium phase model are implemented to capture the two-phase interface, and the lateral merger process. It is found that the whole transition process can be divided to three sub-stages: sliding, merger, and post-merger. The evaporation rate is much higher in the first two stages due to the boundary layer effects in. Both the mass flux and heat flux affect bubble growth. Specifically, the bubble growth rate increase with the increase of heat flux, or the decrease of mass flux.  相似文献   

2.
An experimental study of heat transfer performance in 3D internally finned steel-water heat pipe was carried out in this project. All the main parameters that can significantly influence the heat transfer performance of heat pipe, such as working temperature, heat flux, inclination angle, working fluid fill ratio (defined by the evaporation volume), have been examined. Within the experimental conditions (working temperature 40 °C–95 °C, heat flux 5.0 kw/m2–40 kw/m2, inclination angle 2–90°), the evaporation and condensation heat transfer coefficients in 3D internally finned heat pipe are found to be increased by 50–100% and 100–200%, respectively, as compared to the smooth gravity-assisted heat pipe under the same conditions. Therefore, it is concluded that the special structures of 3D-fins on the inner wall can significantly reduce the internal thermal resistance of heat pipe and then greatly enhance its heat transfer performance.  相似文献   

3.
Heat transfer associated with a vapor bubble sliding along a downward-facing inclined heater surface was studied experimentally using holographic interferometry. Volume growth rate of the bubbles as well as the rate of heat transfer along the bubble interface were measured to understand the mechanisms contributing to the enhancement of heat transfer during sliding motion. The heater surface was made of polished silicon wafer (length 185 mm and width 49.5 mm). Experiments were conducted with PF-5060 as test liquid, for liquid subcoolings ranging from 0.2 to 1.2 °C and wall superheats from 0.2 to 0.8 °C. The heater surface had an inclination of 75° to the vertical. Individual vapor bubbles were generated in an artificial cavity at the lower end of the heater surface. High-speed digital photography was used to measure the bubble growth rate. The temperature field around the sliding bubble was measured using holographic interferometry. Heat transfer at the bubble interface was calculated from the measured temperature field. Results show that for the range of parameters considered the bubbles continued to grow, with bubble growth rates decreasing with increasing liquid subcooling. Heat transfer measurements show that condensation occurs on most of the bubble interface away from the wall. For the parameters considered condensation accounted for less than 12% of the rate heat transfer from the bubble base. In this study the heater surface showed no drop in temperature as a result of heat transfer enhancement during bubbles sliding.  相似文献   

4.
Growth of an isolated bubble and horizontal coalescence events between bubbles of dissimilar size were examined during pool nucleate boiling of water on a horizontal, electrically-heated titanium foil 25 μm thick. Wall temperature measurements on the back of the foil by high-speed IR camera, synchronized with high-speed video camera recordings of the bubble motion, improved the temporal and spatial resolution of previous observations by high-speed liquid crystal thermography to 1 ms and 40 μm, respectively, leading to better detailed maps of the transient distributions of wall heat flux. The observations revealed complex behaviour that disagreed with some other observations and current modelling assumptions for the mechanisms of heat transfer over the wall contact areas of bubbles and interactions between bubbles. Heat transfer occurred from the entire contact area and was not confined to a narrow peripheral triple-contact zone. There was evidence of an asymmetrical interaction between bubbles before coalescence. It was hypothesised that a fast-growing bubble pushed superheated liquid under a slow-growing bubble. Contact of this liquid with regions of the wall that had been pre-cooled during bubble growth caused local reductions in the wall heat flux. During coalescence, movement of liquid under both bubbles caused further changes in the wall heat flux that also depended on pre-cooling. Contraction of the contact area caused a peripheral reduction in the heat flux and there was no evidence of a large increase in heat flux during detachment. Boiling on very thin foils imposes special conditions. Sensitivity to the thermal history of the wall must be taken into account when applying the observations and hypotheses to other conditions.  相似文献   

5.
Experimental investigations of tube side condensation and evaporation in two 3-D enhanced heat transfer (2EHT) tubes were compared to the performance of a smooth surface copper tube. The equivalent outer diameter of all the tubes was 12.7 mm with an inner diameter of 11.5 mm. Both the inner and outer surfaces of the 2EHT tubes are enhanced by longitudinal grooves with a background pattern made up by an array of dimples/embossments. Experimental runs were performed using R410A as the working fluid, over the quality range of 0.2–0.9. For evaporation, the heat transfer coefficient ratio (compares the heat transfer coefficient of the enhanced tube to that of a smooth tube) of the 2EHT tubes is 1.11–1.43 (with an enhanced surface area ratio of 1.03) for mass flux rate that ranges from 80 to 200 kg/m2 s. For condensation, the heat transfer coefficient ratio range is 1.1–1.16 (with an enhanced surface area ratio of 1.03) for mass flux that ranges from 80 to 260 kg/m2 s. Frictional pressure drop values for the 2EHT tubes are very similar to each other. Heat transfer enhancement in the 2EHT tubes is mainly due to the dimples and grooves in the inner surface that create an increased surface area and interfacial turbulence; producing higher heat flux from wall to working fluid, flow separation, and secondary flows. A comparison was performed to evaluate the enhancement effect of the 2EHT tubes using a defined performance factor and this indicates that the 2EHT tubes provides a better heat transfer coefficient under evaporation conditions.  相似文献   

6.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

7.
An experiment is carried out here to investigate flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted in the bottom of a horizontal rectangular channel. Besides, three different micro-structures of the chip surface are examined, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The pitch of the fins is equal to the fin width for both surfaces. The effects of the FC-72 mass flux, imposed heat flux, and surface micro-structures of the silicon chip on the FC-72 saturated flow boiling characteristics are examined in detail. The experimental data show that an increase in the FC-72 mass flux causes a delay in the boiling incipience. However, the flow boiling heat transfer coefficient is not affected by the coolant mass flux. But adding the micro-pin-fin structures to the chip surfaces can effectively enhance the single-phase convection and flow boiling heat transfer. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for a rise in the FC-72 mass flux. A higher coolant mass flux results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed at a higher imposed heat flux. We also note that adding the micro-pin-fins to the chips decrease the bubble departure diameter and increase the bubble departure frequency. However, the departing bubbles are larger for the pin-finned 100 surface than the pin-finned 200 surface but the bubble departure frequency exhibits an opposite trend. Finally, empirical equations to correlate the present data for the FC-72 single-phase liquid convection and saturated flow boiling heat transfer coefficients and for the bubble characteristics are provided.  相似文献   

8.
Experiments are conducted here to investigate subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted on the bottom of a horizontal rectangular channel. In the experiments the mass flux is varied from 287 to 431 kg/m2 s, coolant inlet subcooling from 2.3 to 4.3 °C, and imposed heat flux from 1 to 10 W/cm2. Besides, the silicon chips contain three different geometries of micro-structures, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The measured data show that the subcooled flow boiling heat transfer coefficient is reduced at increasing inlet liquid subcooling but is little affected by the coolant mass flux. Besides, adding the micro-pin-fin structures to the chip surface can effectively raise the single-phase convection and flow boiling heat transfer coefficients. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for rises in the FC-72 mass flux and inlet liquid subcooling. Increasing coolant mass flux or reducing inlet liquid subcooling results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed as the imposed heat flux is increased. Finally, empirical correlations for the present data for the heat transfer and bubble characteristics in the FC-72 subcooled flow boiling are proposed.  相似文献   

9.
An experiment is carried out here to investigate the evaporation heat transfer and associated evaporating flow pattern for refrigerant R-134a flowing in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm. In the experiment, the effects of the duct gap, refrigerant vapor quality, mass flux and saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. For the duct gap of 2.0 mm, the refrigerant mass flux G is varied from 300 to 500 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, vapor quality xm from 0.05 to 0.95, and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the gap of 1.0 mm, G is varied from 500 to 700 kg/m2 s with the other parameters varied in the same ranges as that for δ = 2.0 mm. The experimental data clearly show that the evaporation heat transfer coefficient increases almost linearly with the vapor quality of the refrigerant and the increase is more significant at a higher G. Besides, the evaporation heat transfer coefficient also rises substantially at increasing q. Moreover, a significant increase in the evaporation heat transfer coefficient results for a rise in Tsat, but the effects are less pronounced in the narrower duct at a low imposed heat flux and a high refrigerant mass flux. Furthermore, the evaporation heat transfer coefficient increases substantially with the refrigerant mass flux except at low vapor quality. We also note that reducing the duct gap causes a significant increase in hr. In addition to the heat transfer data, photos of R-134a evaporating flow taken from the duct side show the change of the dominant two-phase flow pattern in the duct with the experimental parameters. Finally, an empirical correlation for the present measured heat transfer coefficient for the R-134a evaporation in the narrow annular ducts is proposed.  相似文献   

10.
Flow boiling heat transfer characteristics of water are experimentally studied in a circular minichannel with an inner diameter of 1500 μm. The fluid flows upwards and the test section, made of the nickel alloy Inconel 600, is directly electrically heated. Thus, the evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 50 and 100 kg/(m2 s) and heat fluxes from 10 to 115 kW/m2 at an inlet pressure of 3 bar are examined.Infrared thermography is applied to measure the outer wall temperatures of the minichannel. This experimental method permits the identification of different boiling regions, boiling mechanisms and the determination of local heat transfer coefficients. Measurements are carried out in single-phase flow, subcooled and saturated boiling regions. The experimental heat transfer coefficients in the region of saturated boiling are compared with correlations available in literature and with a physically founded model developed for convective boiling.  相似文献   

11.
Experiments were conducted to investigate flow boiling in 200 μm × 253 μm parallel microchannels with structured reentrant cavities. Flow morphologies, boiling inceptions, heat transfer coefficients, and critical heat fluxes were obtained and studied for mass velocities ranging from G = 83 kg/m2 s to G = 303 kg/m2 s and heat fluxes up to 643 W/cm2. Comparisons of the performance of the enhanced and plain-wall microchannels were performed. The microchannels with reentrant cavities were shown to promote nucleation of bubbles and to support significantly better reproducibility and uniformity of bubble generation. The structured surface was also shown to significantly reduce the boiling inception and to enhance the critical heat flux.  相似文献   

12.
An experiment is carried out here to investigate the characteristics of the evaporation heat transfer for refrigerants R-134a and R-407C flowing in horizontal small tubes having the same inside diameter of 0.83 or 2.0 mm. In the experiment for the 2.0-mm tubes, the refrigerant mass flux G is varied from 200 to 400 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, inlet vapor quality xin from 0.2 to 0.8 and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the 0.83-mm tubes, G is varied from 800 to 1500 kg/m2 s with the other parameters varied in the same ranges as those for Di = 2.0 mm. In the study the effects of the refrigerant vapor quality, mass flux, saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. The experimental data clearly show that both the R-134a and R-407C evaporation heat transfer coefficients increase almost linearly and significantly with the vapor quality of the refrigerant, except at low mass flux and high heat flux. Besides, the evaporation heat transfer coefficients also increase substantially with the rises in the imposed heat flux, refrigerant mass flux and saturation temperature. At low R-134a mass flux and high imposed heat flux the evaporation heat transfer coefficient in the smaller tubes (Di = 0.83 mm) may decline at increasing vapor quality when the quality is high, due to the partial dryout of the refrigerant flow in the smaller tubes at these conditions. We also note that under the same xin, Tsat, G, q and Di, refrigerant R-407C has a higher hr when compared with that for R-134a. Finally, an empirical correlation for the R-134a and R-407C evaporation heat transfer coefficients in the small tubes is proposed.  相似文献   

13.
Three-dimensional simulations of condensation of refrigerant R134a in a horizontal minichannel are presented. Mass fluxes ranging from 50 kg m?2 s?1 up to 1000 kg m?2 s?1 are considered in a circular minichannel of 1 mm diameter, and uniform wall and vapour–liquid interface temperatures are imposed as boundary conditions. The Volume of Fluid (VOF) method is used to track the vapour–liquid interface; the effects of interfacial shear stress, gravity and surface tension are taken into account. The influence of turbulence in the condensate film is analysed and compared against the assumption of laminar condensate flow by employing different computational approaches and validating the results against experimental data. Under the assumption of laminar condensate flow, experimental heat transfer coefficient values at low mass fluxes can be predicted, but the computed heat transfer coefficient is found to be almost independent of mass flux and vapour quality. Only when turbulence in the condensate film is taken into account does the numerical model capture the influence of mass flux that is observed in the experimental measurements.  相似文献   

14.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   

15.
A photographic study was carried out for the subcooled flow boiling of water to elucidate the rise characteristics of single vapor bubbles after the departure from nucleation sites. The test section was a transparent glass tube of 20 mm in inside diameter and the flow direction was vertical upward; liquid subcooling was parametrically changed within 0–16 K keeping system pressure and liquid velocity at 120 kPa and 1 m/s, respectively. The bubble rise paths were analyzed from the video images that were obtained at the heat flux slightly higher than the minimum heat flux for the onset of nucleate boiling. In the present experiments, all the bubbles departed from their nucleation sites immediately after the inception. In low subcooling experiments, bubbles slid upward and consequently were not detached from the vertical heated wall; the bubble size was increased monotonously with time in this case. In moderate and high subcooling experiments, bubbles were detached from the wall after sliding for several millimeters and migrated towards the subcooled bulk liquid. The bubbles then reversed the direction of lateral migration and were reattached to the wall at moderate subcooling while they collapsed due to the condensation at high subcooling. It was hence considered that the mechanisms of the heat transfer from heated wall and the axial growth of vapor volume were influenced by the difference in bubble rise path. It was observed after the inception that bubbles were varied from flattened to more rounded shape. This observation suggested that the bubble detachment is mainly caused by the change in bubble shape due to the surface tension force.  相似文献   

16.
This study constitutes an experimental investigation into the convective boiling heat transfer and critical heat flux (CHF) of methanol–water mixtures in a diverging microchannel with artificial cavities. Flow visualization shows that bubbles are generally nucleated at both the artificial cavities and side walls of the channel. This confirms the proper functioning of such artificial cavities. Consequently, the wall superheat of the onset nucleate boiling is significantly reduced. Experimental results show that the boiling heat transfer and CHF are significantly influenced by the molar fraction (xm) as well as the mass flux. The CHF increases with an increase in mass flux at the same molar fraction. On the other hand, the CHF increases slightly from xm = 0 to 0.3, and then decreases rapidly from xm = 0.3 to 1 at the same mass flux. The maximum CHF is reached at xm = 0.3, particularly for a mass flux of 175 kg/m2 s, due to the Marangoni effect. Flow visualization confirms that the Marangoni effect helps a region with a liquid film breakup persist to a higher heat flux, and therefore a higher CHF. Moreover, a new empirical correlation involving the Marangoni effect for the CHF on the flow boiling of methanol–water mixtures is developed. The present correlation prediction shows excellent agreement with the experimental data, and further confirms that the present correlation may predict the Marangoni effect on the CHF for the convective boiling heat transfer of binary mixtures.  相似文献   

17.
Subcooled flow film boiling experiments were conducted on a vertical flat plate, 30.5 cm in height, and 3.175 cm wide with forced convective upflow of subcooled water at atmospheric pressure. Data have been obtained for mass fluxes ranging from 0 to 700 kg/m2s, inlet subcoolings ranging from 0 to 25 °C and wall superheats ranging from 200 to 400 °C. Correlations for wall heat transfer coefficient and wall heat flux partitioning were developed as part of this work. These correlations derive their support from simultaneous measurements of the wall heat flux, fluid temperature profiles, liquid side heat flux and interfacial wave behavior during steady state flow film boiling. A new correlation for the film collapse temperature was also deduced by considering the limiting case of heat flux to the subcooled liquid being equal to the wall heat flux. The premise of this deduction is that film collapse under subcooled conditions occurs when there is no net vapor generation. These correlations have also been compared with the data and correlations available in the literature.  相似文献   

18.
Homogeneous vapor nucleation of water in the electrolyte solution within a nanopore at its superheat limit was studied using the bubble nucleation model based on molecular interaction. The wall motion of the bubble that evolved from the evaporated water was obtained using the Keller–Miksis equation and the distribution of temperature inside the bubble was obtained by solving the continuity, momentum and energy equations for the vapor inside the bubble. Heat transfer at the interface was also considered in this study. The nucleation rate of the 3 M NaCl solution at 571 K is estimated to be approximately 0.15 × 1028 clusters/(m3 s). With this value of the nucleation rate, the complete evaporation time of the 50 nm radius of the electrolyte solution is approximately 0.60 ns. The calculated life time of the bubble that evolved from the evaporated solution, or the time duration for the growth and subsequent collapse of the bubble, is approximately 32 ns, which is close agreement with the observed result of 28 ns. The bubble reaches its maximum radius of 301 nm at 13.2 ns after the bubble evolution.  相似文献   

19.
The effective radial heat conductivity of a solid foam packing and the wall heat transfer coefficient are determined under fluid flow conditions typical of catalytic reactors. A detailed 2-D heterogeneous model is phase-averaged in order to rigorously define lumped heat transfer parameters. The resulting pseudo-homogeneous model involves two fitting parameters only and it is successfully compared with experiments. First, experiments with packed extrudates validate the approach in comparison with known results. A second experiment with solid foams (polyurethane and SiC) allows correlating the radial heat conductivity to the nature of the solid, its morphology and fluid flow characteristics. The method is inspired from the correlations for particles and seems very promising. Conversely, determining the wall heat transfer coefficient yields only an average value (110 W m?2 K?1 ± 15%) and correlation with fluid velocity is impossible in the studied range 0.018–0.32 m s?1.  相似文献   

20.
The flow boiling heat transfer in a single microchannel was investigated with pure water and nanofluid as the working fluids. The microchannel had a size of 7500 × 100 × 250 μm, which was formed by two pyrex glasses and a silicon wafer. A platinum film with a length of 3500 μm and a width of 80 μm was deposited at the bottom channel surface, acting as the heater and temperature sensor. The nanofluid had a low weight concentration of 0.2%, consisting of de-ionized water and 40 nm Al2O3 nanoparticles. The nanoparticle deposition phenomenon was not observed. The boiling flow displays chaotic behavior due to the random bubble coalescence and breakup in the milliseconds timescale at moderate heat fluxes for pure water. The flow instability with large oscillation amplitudes and long cycle periods was observed with further increases in heat fluxes. The flow patterns are switched between the elongated bubbles and isolated miniature bubbles in the timescale of 100 s. It is found that nanofluid significantly mitigate the flow instability without nanoparticle deposition effect. The boiling flow is always stable or quasi-stable with significantly reduced pressure drop and enhanced heat transfer. Miniature bubbles are the major flow pattern in the microchannel. Elongated bubbles temporarily appear in the milliseconds timescale but isolated miniature bubbles will occupy the channel shortly. The decreased surface tension force acting on the bubble accounts for the smaller bubble size before the bubble departure. The inhibition of the dry patch development by the structural disjoining pressure, and the enlarged percentage of liquid film evaporation heat transfer region with nanoparticles, may account for the heat transfer enhancement compared to pure water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号