首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

2.
In this work, biodiesel from waste vegetable oil was used as an additive in low sulphur diesel fuel in automobile engines. The result was a fuel mixture with high lubricating power. According to the lubrication trials, the experimental mixtures complied with lubricity conditions established by European regulations, even when only a small quantity of biodiesel was used. It was also found that the mixtures were compatible with different engine gaskets and engine lubricant. Lastly, bench tests were performed using an automobile engine with mixtures of diesel fuel without conventional lubricant additive and biodiesel. The results showed that engine performance curves were very similar to those obtained with diesel fuel and that contaminating emissions from the engine decreased substantially by including biodiesel in the fuel, except for nitrogen oxides.  相似文献   

3.
As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.  相似文献   

4.
The high viscosity of fish oil leads to problem in pumping and spray characteristics. The inefficient mixing of fish oil with air leads to incomplete combustion. The best way to use fish oil as fuel in compression ignition (CI) engines is to convert it into biodiesel. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. Combustion tests for methyl ester of fish oil and its blends with diesel fuel were performed in a kirloskar H394 DI diesel engine, to evaluate fish biodiesel as an alternative fuel for diesel engine, at constant speed of 1500 rpm under variable load conditions. The tests showed no major deviations in diesel engine's combustion as well as no significant changes in the engine performance and reduction of main noxious emissions with the exception on NOx. Overall fish biodiesel showed good combustion properties and environmental benefits.  相似文献   

5.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

6.
《Biomass & bioenergy》2003,24(2):141-149
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions.  相似文献   

7.
《能源学会志》2014,87(3):188-195
Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental-friendly nature. But biodiesel undergoes oxidation and degenerate more quickly than mineral diesel. Further several studies report NOx emissions increases for biodiesel fuel compared with conventional diesel fuel. In this paper, the experimental investigation of the effect of antioxidant additive (Butylated hydroxytoluene) on oxidation stability and NOx emissions in a methyl ester of neem oil fuelled direct injection diesel engine has been reported. The antioxidant additive is mixed in various proportions (100–400 ppm) with methyl ester of neem oil. The oxidation stability was tested in Rancimat apparatus and emissions, performance in a computerized 4-stroke water-cooled single cylinder diesel engine of 3.5 kW rated power. Results show that the antioxidant additive is effective in increasing the oxidation stability and in controlling the NOx emissions of methyl ester of neem oil fuelled diesel engines.  相似文献   

8.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

9.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as the mono-alkyl-esters of long chain fatty acids derived from renewable feedstocks, such as, vegetable oils or animal fats, for use in compression ignition engines. Different parameters for the optimization of biodiesel production were investigated in the first phase of this study, while in the next phase of the study performance test of a diesel engine with neat diesel fuel and biodiesel mixtures were carried out. Biodiesel was made by the well known transesterification process. Cottonseed oil (CSO) was selected for biodiesel production. Cottonseed is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The transesterification results showed that with the variation of catalyst, methanol or ethanol, variation of biodiesel production was realized. However, the optimum conditions for biodiesel production are suggested in this paper. A maximum of 77% biodiesel was produced with 20% methanol in presence of 0.5% sodium hydroxide. The engine experimental results showed that exhaust emissions including carbon monoxide (CO) particulate matter (PM) and smoke emissions were reduced for all biodiesel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.  相似文献   

10.
Compression ignition (CI) engines used in the transportation sector operates on fossil diesel and is one of the biggest causes of air pollution. Numerous studies were carried out over last two decades to substitute the fossil diesel with biofuels so that the net carbon dioxide (CO2) emission can be minimized. However, the engine performance with these fuel was sub-standard and there were many long-term issues. Therefore, many researchers inducted hydrogen along with the biofuels. The present study gives an outlook on the effect of hydrogen addition with biodiesel/vegetable oil from various sources in CI engine. Engine parameters (brake thermal efficiency, brake specific fuel consumption), combustion parameters (in-cylinder pressure and heat release rate) and emission parameters (unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions) were evaluated in detail. The results show that hydrogen induction in general improves the engine performance as compared to biodiesel/vegetable oil but it is similar/lower than diesel. Except NOx emissions all other emissions showed a decreasing trend with hydrogen addition. To counter this effect numerous after-treatment systems like selective catalytic reduction (SCR), exhaust gas recirculation (EGR), selective non-catalytic reduction system (SNCR) and non-selective catalytic reduction system (NSCR) were proposed by researchers which were also studied in this review.  相似文献   

11.
《Applied Thermal Engineering》2007,27(13):2314-2323
The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from triglycerides (vegetable oils/animal fats) present promising “greener” substitutes for fossil fuels. Vegetable oils, due to their agricultural origin, are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel fuel.In the present research, experiments were designed to study the effect of reducing Jatropha oil’s viscosity by increasing the fuel temperature (using waste heat of the exhaust gases) and thereby eliminating its effect on combustion and emission characteristics of the engine. Experiments were also conducted using various blends of Jatropha oil with mineral diesel to study the effect of reduced blend viscosity on emissions and performance of diesel engine. A single cylinder, four stroke, constant speed, water cooled, direct injection diesel engine typically used in agricultural sector was used for the experiments. The acquired data were analyzed for various parameters such as thermal efficiency, brake specific fuel consumption (BSFC), smoke opacity, CO2, CO and HC emissions. While operating the engine on Jatropha oil (preheated and blends), performance and emission parameters were found to be very close to mineral diesel for lower blend concentrations. However, for higher blend concentrations, performance and emissions were observed to be marginally inferior.  相似文献   

12.
The modeling of transient turbocharged diesel engine operation appeared in the early seventies and continues to be in the focal point of research, due to the importance of transient response in the everyday operating conditions of engines. The majority of research has focused so far on issues concerning thermodynamic modeling, as these directly affect performance and pollutants' emissions. On the other hand, issues concerning the dynamics of transient operation are usually over-simplified, possibly for the sake of speeding up program execution time. In the present work, an experimentally validated transient diesel engine simulation code is used to study and evaluate the importance of the lubricating oil properties (oil-type, viscosity, temperature) on the transient response of a turbocharged diesel engine. It is revealed how the lubricating oil affects mechanical friction and hence, the speed response as well as the other interesting parameters, e.g. fuel pump rack position or turbocharger operating point for load-change schedules typical in the European Transient Cycles for heavy-duty engines. Particularly under low ambient conditions, the high oil viscosity is responsible for a significant increase in the respective frictional losses worsening the engine transient response.  相似文献   

13.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

14.
《Biomass & bioenergy》2001,20(4):317-325
Biodiesel is an alternative fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Previous research has shown that biodiesel-fueled engines produce less carbon monoxide, unburned hydrocarbons, and particulate emissions compared to diesel fuel. One drawback of biodiesel is that it is more prone to oxidation than petroleum-based diesel fuel. In its advanced stages, this oxidation can cause the fuel to become acidic and to form insoluble gums and sediments that can plug fuel filters. The objective of this study was to evaluate the impact of oxidized biodiesel on engine performance and emissions. A John Deere 4276T turbocharged DI diesel engine was fueled with oxidized and unoxidized biodiesel and the performance and emissions were compared with No. 2 diesel fuel. The neat biodiesels, 20% blends, and the base fuel (No. 2 diesel) were tested at two different loads (100 and 20%) and three injection timings (3° advanced, standard; 3° retarded). The tests were performed at steady-state conditions at a single engine speed of 1400 rpm. The engine performance of the neat biodiesels and their blends was similar to that of No. 2 diesel fuel with the same thermal efficiency, but higher fuel consumption. Compared with unoxidized biodiesel, oxidized neat biodiesel produced 15 and 16% lower exhaust carbon monoxide and hydrocarbons, respectively. No statistically significant difference was found between the oxides of nitrogen and smoke emissions from oxidized and unoxidized biodiesel.  相似文献   

15.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

16.
Vegetable oils are a promising alternative among the different diesel fuel alternatives. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication oil from long-term use in diesel engines. These problems can be eliminated or minimized by transesterification of the vegetable oils to form monoesters. These monoesters are known as biodiesel. The important advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. Although the transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than that of petroleum diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of this study is to apply LHR engine for improving engine performance when biodiesel is used as an alternative fuel. For this purpose, a turbocharged direct injection (DI) diesel engine was converted to a LHR engine and the effects of biodiesel (produced from sunflower oil) usage in the LHR engine on its performance characteristics have been investigated experimentally. The results showed that specific fuel consumption and the brake thermal efficiency were improved and exhaust gas temperature before the turbine inlet was increased for both fuels in the LHR engine.  相似文献   

17.
The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.  相似文献   

18.
In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.  相似文献   

19.
This article is a literature review on biodiesel production, combustion, performance and emissions. This study is based on the reports of about 130 scientists who published their results between 1980 and 2008. As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available sources to fulfill the energy demand of the world. More than 350 oil-bearing crops identified, among which some only considered as potential alternative fuels for diesel engines. The scientists and researchers conducted tests by using different oils and their blends with diesel.A vast majority of the scientists reported that short-term engine tests using vegetable oils as fuels were very promising but the long-term test results showed higher carbon built up and lubricating oil contamination resulting in engine failure. They concluded that vegetable oils, either chemically altered or blended with diesel to prevent the engine failure. It was reported that the combustion characteristics of biodiesel are similar as diesel and blends were found shorter ignition delay, higher ignition temperature, higher ignition pressure and peak heat release. The engine power output was found to be equivalent to that of diesel fuel. In addition, it observed that the base catalysts are more effective than acid catalysts and enzymes.  相似文献   

20.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号