首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

2.
(Nd1−xGdx)2(Ce1−xZrx)2O7 (0 ≤ x ≤ 1.0) powders with an average particle size of 100 nm were synthesized with chemical-coprecipitation and calcination method, and were characterized by X-ray diffractometry and scanning electron microscopy. The sintering behaviour of (Nd1−xGdx)2(Ce1−xZrx)2O7 powders was studied by pressureless sintering at 1600–1700 °C for 10 h in air. The relative densities of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions increase with increasing the sintering temperature, and gradually decrease with increasing the content of neodymium and cerium at identical temperature levels. (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions have a single phase of defect fluorite-type structure among all the composition combinations studied. The lattice parameters of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions agree well with the Vegard's rule.  相似文献   

3.
A novel series of Gd1−xEu2xSm1−xZr2O7 (x = 0, 1/3, 1/2, 2/3, 1) ceramics with a constant lattice parameter are prepared by solid-state reaction, and are then evaluated as possible solid electrolytes. The microstructure and electrical properties of Gd1−xEu2xSm1−xZr2O7 ceramics have been investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance analysis. Gd1−xEu2xSm1−xZr2O7 ceramics exhibit a single phase of pyrochlore-type structure. The total conductivity of Gd1−xEu2xSm1−xZr2O7 ceramics obeys the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. At 973–1173 K, the composition has little effect on electrical conductivity of Gd1−xEu2xSm1−xZr2O7 ceramics. Gd1−xEu2xSm1−xZr2O7 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The maximum total conductivity of Gd1−xEu2xSm1−xZr2O7 ceramics is about 1.01 × 10−2 S cm−1 at 1173 K in air.  相似文献   

4.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

5.
SmYb1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.15) ceramics are pressureless-sintered at 1973 K for 10 h in air. The structure and electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and impedance spectroscopy measurements. SmYb1−xMgxZr2O7−x/2 ceramics exhibit a defect fluorite-type structure. The measured electrical conductivities of SmYb1−xMgxZr2O7−x/2 ceramics obey the Arrhenius relation, and electrical conductivity of each composition increases with increasing temperature from 673 to 1173 K. At identical temperature levels, the electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics gradually increases with increasing magnesia content. SmYb1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The electrical conductivity obtained in SmYb1−xMgxZr2O7−x/2 ceramics reaches the highest value of 2.72 × 10−3 S cm−1 at 1173 K for the SmYb0.85Mg0.15Zr2O6.925 ceramic.  相似文献   

6.
7.
(Sm1 − xYbx)2Zr2O7 (0 ≤ x ≤ 1.0) ceramic powders were prepared by chemical-coprecipitation and calcination method, and were pressureless-sintered at 1973 K for 10 h to fabricate dense bulk materials. (Sm1 − xYbx)2Zr2O7 has a single phase with a pyrochlore or defect fluorite structure, depending mainly upon the Yb content. They are found to be pyrochlores for 0 ≤ x ≤ 0.1, and defect fluorites for 0.3 ≤ x ≤ 1.0. The electrical conductivity of (Sm1 − xYbx)2Zr2O7 was investigated by complex impedance spectroscopy over a frequency range of 200 Hz to 20 MHz from 723 to 1173 K in air. The measured electrical conductivity obeys the Arrhenius relation. The grain conductivity of (Sm1 − xYbx)2Zr2O7 ceramics gradually increases with increasing temperature. A decrease of about one order of magnitude in grain conductivity is found at all temperature levels when the Yb content increases from x = 0.1 to x = 0.3. The electrical conductivities of defect fluorite-type materials are lower than those of pyrochlore-type materials in (Sm1 − xYbx)2Zr2O7 system, whereas activation energies for the conduction process increase monotonically as the structure becomes disordered.  相似文献   

8.
The X-ray diffraction patterns of (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics were measured within 15–850 K temperature range. The anomaly in the thermal expansion temperature dependence occurred in 250–365 K range. The generalised Cole–Cole model was proposed to describe the measured effective electric permittivity influenced by high electric conduction and the coexistence of two contributions ?*(T,f) = ?*lattice + ?*carriers was considered. The analysis of the electric permittivity and conduction exhibited two relaxation processes. The electric conduction relaxation characteristic time values indicated the small polaron mechanism with τ0 ≈ 10−13 s occurring in 240–345 K range and the ionic mechanism with τ0 ≈ 10−11 s involved in the other relaxation occurring in the 320–510 K range. The ionic relaxation process was ascribed to a subsystem of defects, which was weakly interrelated to the anomaly in thermal expansion of the (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics. The Gate model was proposed to describe the ionic relaxation mechanism.  相似文献   

9.
(Nd1–xGdx)2(Ce1–xZrx)2O7 (0 ≤ x ≤ 0.5) ceramic powders synthesised by the chemical‐coprecipitation and calcination method were pressureless‐sintered at 1,973 K for 10 h in air. The structure and electrical conductivity of (Nd1–xGdx)2(Ce1–xZrx)2O7 ceramics were investigated by the X‐ray diffraction and impedance spectroscopy measurements. (Nd1–xGdx)2(Ce1–xZrx)2O7 (0 ≤ x ≤ 0.5) ceramics exhibit a single phase of defect fluorite‐type structure. The electrical conductivity of (Nd1–xGdx)2(Ce1–xZrx)2O7 ceramics increases with temperature in the range 623–1,173 K following an Arrhenius law. At identical temperature levels, the measured electrical conductivity of (Nd1–xGdx)2(Ce1–xZrx)2O7 ceramics varies with doping different Gd2O3 and ZrO2 contents and exhibits a maximum at x = 0.1.  相似文献   

10.
Ba0.8Sr0.2Ti1−5x/4NbxO3 ceramics, x = 0, 0.01, 0.05, 0.10, were fabricated by conventional solid-state reaction. With increasing niobium content the ferroelectric phase transition temperature decreases linearly, and the dispersivity of the transition increases. Niobium B-site decreases transition temperature more pronounced than Sr2+ at A-site. The heterovalent substitution of Nb5+ in low content causes local defect dipole, while more substitutions introduce disorder to disturb the long-range dipole correlation. Ba0.8Sr0.2Ti1−0.5/4Nb0.1O3 ceramic shows weak ferroelectric loop at room temperature far from its transition temperature, 153 K.  相似文献   

11.
A systematic investigation was conducted on the mechanism and electrocatalytic properties of O2 and Cl2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru(0.3)Ti(0.6)Ce(0.1−x)]O2[Nb2O5](x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO2, while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb2O5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO2 content compositions are fragile, due mainly to the porosity caused by CeO2 presence. On the other hand, Nb2O5 addition decreases considerably this instability.  相似文献   

12.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

13.
New pyrochlore ceramics have been produced by doping Sm and Nd into the Bi site and Fe into the Nb site in the Bi1.5Zn0.92Nb1.5O6.92 (BZN) pyrochlore. Doped pyrochlore ceramics were produced by conventional solid state mixing of oxides at different doping levels using the compositions of Bi1.5−xSmxZn0.92Nb1.5O6.92, Bi1.5−xNdxZn0.92Nb1.5O6.92 and Bi1.5Zn0.92Nb1.5−xFexO6.92−x. The solubility limit of cations was determined as x = 0.13, 0.18 and 0.15 for Sm, Nd and Fe, respectively. While Sm and Nd increased the dielectric constant (?), Fe doping led a decrease in ?. Dielectric constant of Sm and Nd doped BZN increased to 199 at x = 0.13 (Sm) and to 219 at x = 0.18 (Nd). At low Fe dopings (x = 0.05), the dielectric constant of BZN increased to 242 but decreased to 211 at x = 0.15. The dielectric losses were lower for Sm and Nd dopings than Fe but in all cases it was lower than 0.006. The dielectric constant of Sm, Nd and Fe doped BZN ceramics was nearly independent of frequency within the frequency range between 1 kHz and 2 MHz, but decreased considerably with temperature between 20 and 200 °C. Temperature coefficient of Sm doped BZN (−354 ppm/°C) was lower than Nd and Fe doped BZN ceramics at solubility limits (−538 ppm/°C for Nd and −565 ppm/°C for Fe).  相似文献   

14.
The Pechinni method (A) as well as hydrothermal treatment (B) of co-precipitated CeO2-based gels with NaOH solution were used to synthesise pure CeO2, and CeO2-based solid solutions with formula Ce1−xMxO2, Ce1−x(M0.5Ca0.5)xO2 M = Gd, Sm for 0.15 < x < 0.3 nanopowders. The thermal evolution of CeO2-based precursors during heating them up to 1000 °C was monitored by thermal (TG, DTA) analysis and X-ray diffraction method. All nanopowders and samples sintered were found to be pure CeO2 or ceria-based solutions with fluorite-type structure. The microstructure of CeO2-based sintered samples at 1500 °C (A) or 1250 °C (B) was observed for 2 h under the scanning electron microscope. The electrical properties of singly Ce1−xMxO2 or doubly doped CeO2-based samples with formula Ce1−x(M0.5Ca0.5)xO2, M = Gd, Sm, 0.15 < x < 0.30 were investigated by means of the ac impedance spectroscopy method throughout the temperature range of 600-800 °C. It has been stated that partial substitution of calcium by samarium or calcium by gadolinium in the Ce1−x(M0.5Ca0.5)xO2, M = Gd, Sm solid solutions leads to ionic conductivity enhancement comparable with only samaria- or gadolina-doped ceria. The CeO2-based samples with small-grained microstructures obtained from powders synthesised by hydrothermal method exhibited better ionic conductivity than samples with the same composition obtained from powders synthesised by the Pechinii method. The stability of the electrolytic properties of selected co-doped ceria sinters in fuel gases (H2, CH4) as well as exhaust gases from diesel engine was also investigated. The co-doped Ce0.8(Sm0.5Ca0.5)0.2O2 or Ce0.85(Gd0.5Ca0.5)0.15O2 dense samples would appear be to more adequate oxide electrolytes than Ce1−xMxO2, M = Sm, Gd and x = 0.15 or 0.2 for electrochemical devices operating at temperatures ranging from 600 to 700 °C.  相似文献   

15.
Cr and Co doped Bi1.5Zn0.92Nb1.5O6.92 pyrochlore ceramics were produced by solid state mixing of oxides. Cr and Co were doped into the Nb and Nb-Zn sites considering the compositions of Bi1.5Zn0.92Nb1.5−xCrxO6.92−x, (Bi1.5Zn0.46)(Zn0.46−3x/6Nb1.5−3x/5Crx)O6.92−x/2 for Cr doping and Bi1.5Zn0.92Nb1.5−3x/5CoxO6.92, (Bi1.5Zn0.46)(Zn0.46−3x/6Nb1.5−3x/5Cox)O6.92−x/2 for Co doping. The solubility limit of Cr in BZN was higher than that of Co and the solubility limit increased when doping was made both into Nb and Zn sites. The second phases appeared when x > 0.2 for Cr and x > 0.15 for Co doping into the Nb-Zn sites. Simultaneous Cr doping into the Nb- and Zn-sites of BZN pyrochlore gave higher dielectric constant than doping into the Nb-site of pyrochlore. However, Co doping into the Nb- and Zn-sites and only into the Nb-site of BZN gave identical dielectric results in the range of 202-218. The temperature coefficient of dielectric constant decreased with Cr doping and increased with Co doping.  相似文献   

16.
A gelatin-based electrolyte has been developed and characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and atomic force microscopy (AFM). The heat treatment temperature was found the key factor affecting its ionic conductivity that increases from 1.5 × 10−5 S/cm to 4.9 × 10−4 S/cm by heating from room temperature up to 80 °C. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior. EC-devices with the configuration K-glass/Nb2O5:Mo EC-layer/gelatin-based electrolyte/(CeO2)x(TiO2)1−x ion-storage (IS) layer/K-glass, have been assembled and characterized. They show a good long time cyclic stability, but the change of the optical density measured at 550 nm after 25 000 cycles was only 0.13.  相似文献   

17.
This paper reports the synthesis, structure, chemical stability and electrical transport properties of Ti substituted Ba3CaNb2O9 (BCN) to develop electrolytes for proton conducting solid oxide fuel cells (H-SOFCs). The powder X-ray diffraction (PXRD) of Ba3CaNb2−xTixO9−δ (x = 0.1, 0.15, 0.2, 0.25 and 0.3) and Ba3Ca1.18Nb1.82−xTixO9−δ (x = 0.15 and 0.25) showed formation of double perovskite-like structure with lattice constant comparable to that of Ba3Ca1.18Nb1.82O9−δ (BCN18). Scanning electron microscopy (SEM) showed dense and pore-free microstructure for Ba3CaNb1.75Ti0.25O8.875. PXRD and Fourier transform infrared (FTIR) spectroscopy data confirmed long-term stability of Ba3CaNb2−xTixO9−δ and Ba3Ca1.18Nb1.82−xTixO9−δ in boiling H2O and in CO2 at elevated temperatures. The AC impedance investigation showed contribution due to bulk, grain-boundary and electrode effect at low temperatures. The electrical conductivity of studied materials were measured in different medium including dry air, dry H2, wet H2, wet N2 and D2O. Increase in conductivity in wet N2 and decrease in conductivity in D2O confirmed the proton conduction in Ba3CaNb1.75Ti0.25O9-δ. Among Ti-substituted compounds investigated in this study, Ba3Ca1.18Nb1.57Ti0.25O8.605 showed the highest conductivity of 3.5 × 10−4 S cm−1 at 400 °C in wet N2 (3%H2O), which is comparable to reported values of Ba2Ca0.79Nb0.66Ta0.55O6−δ and BCN18.  相似文献   

18.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

19.
(K0.50Na0.50)0.97Bi0.01(Nb1-xZrx)O3 (KNBNZ) lead-free ceramics were prepared by the conventional solid-state sintering process. Their phase structure is dependent on the Zr content in the investigated range, and the ceramics endure a phase transition from pseudocubic to orthorhombic with increasing Zr content. Improved piezoelectric properties have been observed when the poling temperature is located at ~100 °C because of the coexistence of orthorhombic and tetragonal phases. Their dielectric and piezoelectric properties were enhanced by doping Zr, the ceramic with x=0.02 showing optimal electrical properties, i.e., d33~161 pC/N, kp~0.41, Qm~81, Tc~370 °C, and To−t~130 °C. These results show that the KNBNZ ceramic is a promising lead-free piezoelectric material.  相似文献   

20.
A series of novel red emitting phosphors Li6M(La1−xEux)2Nb2O12 (M=Ca, Sr, Ba; 0≤x≤0.3) were synthesized by solid state reaction, and their structures and photoluminescence properties were investigated in detail. The excitation spectrum of Li6M(La1−xEux)2Nb2O12 revealed two mainly excitation bands at 393 nm and 464 nm, which match well with the two popular emissions from near-UV and blue LED chips. Upon the 464 nm light excitation, Li6MLa2Nb2O12:Eu3+ phosphors exhibit a red emission centered at 608 nm, originated from the 5D07F2 transition of Eu3+ ions. The Eu3+ surrounding crystal lattice environment in the garnet-based host was changed by altering the c sites element with different radii alkaline earth Ba, Sr, and Ca. The evident photoluminescence enhancement was observed in Li6M(La1−xEux)2Nb2O12 phosphors with the decreasing of the c sites ionic radius. The emission intensity of the optimized Li6Ca(La0.8Eu0.2)2Nb2O12 (λexc=464 nm) phosphor is about two times higher than that of Y2O3:Eu3+ (λexc=467 nm) under blue light excitation. In addition, the quenching mechanism and the relationship between the structure and photoluminescence property were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号