首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

2.
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g−1 at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.  相似文献   

3.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

4.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

5.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

6.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

7.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

8.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

9.
Phase equilibria and glass formation studies of the (1 − x)TeO2-xCdO system (0.05 ≤ x ≤ 0.33 mol) were realized by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The samples were prepared by applying a conventional melt-quenching technique at 800 °C. The glass formation range of the system was determined as 0.05 ≤ x < 0.15 and the sample containing 10 mol% CdO showed the highest glass stability. Crystallization behavior of the TeO2-CdO glasses was investigated and formation and/or transformation of different phases were detected for each crystallization reaction. In order to obtain thermal stability of the system, as-cast samples were heat-treated above all crystallization reaction temperatures at 550 °C for 24 h. A binary eutectic: liquid → TeO2 + CdTe2O5 was detected at 638 ± 4 °C. Crystallization behavior of the TeO2-CdO glasses and microstructural characterization of the TeO2-CdTe2O5 system was realized.  相似文献   

10.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

11.
We report the electrical conductivity properties of solid-state synthesized perovskite-like La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites. LSGM exhibits both bulk and grain-boundary contribution in the ac impedance plots. The grain-boundary conductivity (σgb) is slightly (≤half-order of magnitude) higher than that of the bulk oxide ion conductivity (σbulk). Powder XRD study reveals that no chemical reaction occurs between LSGM and SrSn1−xFexO3 (1:1 wt.%) at 1000 °C (48 h) and forms a single-phase perovskite-like compound at 1300 °C (48 h) in air, while in hydrogen atmosphere, at 800 °C for 48 h, a growth of LaSrGaO4 and LaSrGa3O7 impurity phases and formation of metallic Fe was observed. The LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites show a single or part of semicircle in air at low-temperature regime. The electrical conductivity of the composites were found to be much higher compared to pure LSGM and lower about an order of magnitude than those of pure Sn-doped SrFeO3 perovskite.  相似文献   

12.
Mg-Ni-Ti-based hydrogen storage alloys Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) were prepared by means of mechanical alloying (MA). The effects of partial substitution of Ni with Co or Mn on the microstructures and electrochemical performance of the alloys were investigated. The result of X-ray diffraction (XRD) shows that the alloys exhibit dominatingly amorphous structures. The electrochemical measurements indicate that the substitution of Ni can dramatically enhance the cycle stability of Mg-Ni-Ti-based alloys. After 50 charge/discharge cycles, the capacity retention rate of the alloy electrodes increases from 30% (Mg0.9Ti0.1Ni) to 59% (Mg0.9Ti0.1Ni0.9Co0.1), 58% (Mg0.9Ti0.1Ni0.9Mn0.1), 46% (Mg0.9Ti0.1Ni0.8Co0.2) and 53% (Mg0.9Ti0.1Ni0.8Mn0.2), respectively. Among these alloys, the Mg0.9Ti0.1Ni0.9Mn0.1 alloy presents better overall electrochemical performance. The cyclic voltammograms (CV) and anti-corruption test reveal that the electrochemical cycle stability of these alloys is improved by substituting Ni with Co or Mn.  相似文献   

13.
The Mg-Zn interaction effect of KyMg1 − xZn1 + xO3 heterogeneous type catalyst and its performance on transesterification of palm oil have been studied using the response surface methodology and the factorial design of experiments. The catalyst was synthesized using the co-precipitation method and the activity was assessed by transesterification of palm oil into fatty acid methyl esters. The ratio of the Mg/Zn metal interaction, temperature and time of calcination were found to have positive influence on the conversion of palm oil to fatty acid methyl ester (FAME) with the effect of metal to metal ratio and temperature of calcination being more significant. The catalytic activity was found to decrease at higher calcination temperature and the catalyst type K2Mg0.34Zn1.66O3 with Mg/Zn ratio of 4.81 gave FAME content of 73% at a catalyst loading of 1.404 wt.% of oil with molar ratio of methanol to oil being 6:1 at temperature of 150 °C in 6 h. A regression model was obtained to predict conversions to methyl esters as a function of metal interaction ratio, temperature of calcination and time. The observed activity of the synthesized catalyst was due to its synergetic structure and composition.  相似文献   

14.
Layered Li1+x(Ni0.3Co0.4Mn0.3)O2−δ (x = 0, 0.03 and 0.06) materials were synthesized through the different calcination times using the spray-dried precursor with the molar ratio of Li/Me = 1.25 (Me = transition metals). The physical and electrochemical properties of the lithium excess and the stoichiometric materials were examined using XRD, AAS, BET and galvanostatic electrochemical method. As results, the lithium excess Li1.06(Ni0.3Co0.4Mn0.3)O2−δ could show better electrochemical properties, such as discharge capacity, capacity retention and C rate ability, than those of the stoichiometric Li1.00(Ni0.3Co0.4Mn0.3)O2−δ. In this paper, the effect of excess lithium on the electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2−δ materials will be discussed based on the experimental results of ex situ X-ray diffraction, transmission electron microscopy (TEM) and galvanostatic intermittent titration technique (GITT)  相似文献   

15.
In this work the microstructure and magnetic properties of Mn-Zn ferrites powders were investigated. MnxZn1  xFe2O4 powders where x = 0.2; 0.35; 0.5; 0.65; 0.8 and 1.0 were obtained by citrate precursor method. Citrate resin precursor was burned on air atmosphere at 400 °C for 3 h. Mn-Zn powders were calcined at 950 °C during 150 min under inert atmospheres: N2 and rarefied atmosphere. Thermal analysis of precursor resin, phase evolution and microstructure of Mn-Zn ferrites powders were investigated by TG, DTA, XRD and SEM techniques. The powders calcined under rarefied atmosphere show spinel cubic structure and contamination of α-Fe2O3, while powders calcined under N2 presents only the spinel cubic structure. Particle size was observed by SEM ranging from 80 to 150 nm. The magnetic properties were measured employing a vibrating sample magnetometer (VSM). It was observed that the saturation magnetization Ms increased with the increase of Mn content. The Ms of Mn0.8Zn0.2Fe2O4 calcined on rarefied atmosphere and Mn0.8Zn0.2Fe2O4 calcined on N2 was 23.31 emu g−1 and 56.23 emu g−1, respectively.  相似文献   

16.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

17.
Iron is a key element in the development of Co-free AB5-type hydrogen storage alloys. The aim of this work is to systematically investigate the effects of Fe and Co on the electrochemical properties of LaNi4.6−xMn0.4Mx (M = Fe or Co, x = 0, 0.25, 0.5 and 0.75) hydrogen storage alloys under relatively low temperatures (273, 253 and 233 K). The results showed that substitution of Fe for Ni reduced the low temperature electrochemical performance much more seriously than that of Co. Exchange current density (I0), charge-transfer resistance (Rct) and hydrogen diffusion coefficient (D) were determined based on the study of linear polarization, electrochemical impedance spectrum (EIS) and galvanostatic discharge, respectively. Both the hydrogen diffusion in the bulk of alloy particles and the electrochemical reaction at the alloy electrolyte interface were found to be greatly limited as the decrease of temperature. During the EIS analysis, interestingly, we found that the semicircle in the high frequency region increased dramatically with the decrease of temperature. The electrochemical process corresponding to this semicircle was proposed to be related to the oxide layer on the surface of alloy particles. Novel explanations of EIS response in metal hydride electrodes were proposed accordingly.  相似文献   

18.
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The abundance of the La(La, Mg)2Ni9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g−1 (x = 0.1) to 68.3 mAh g−1 (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g−1, the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.  相似文献   

19.
A novel SOM process was used to prepare CeNi5 and LaxCe1−xNi5 hydrogen storage alloys directly from their mixed oxides. The electrolytic reduction was carried out in molten CaCl2 system at 1000 °C. The reduction mechanism was investigated by analyzing the chemical compositions and the phase constitutions of the intermediate products of electrolysis. The results suggested that the reduction of NiO-CeO2 may take place in two steps: first, NiO was reduced into Ni and CeO2 reacted with CaCl2 to form CeOCl, then Ni reacted with CeOCl leading to the formation of CeNi5. It was found that the reduction rate increased while decreasing the pressure load of the mixed oxide pellets. Furthermore, CeNi5 could not be produced if the pressure load was lower than 10 MPa. It was also found that the pellets of NiO-CeO2 could be completely reduced to CeNi5 alloy by the SOM process, which was greatly excelled than FFC process. The successful preparation of LaxCe1−xNi5 (x = 0-1) alloy reported here suggests that the SOM process may be promising for the industrial application of producing such alloys.  相似文献   

20.
The effect of Mn content on the crystal structure and electrochemical characteristics of La0.7Mg0.3Ni2.975−xCo0.525Mnx (x = 0, 0.1, 0.2, 0.3, 0.4) alloys has been studied systematically. The results of the Rietveld analyses show that all these alloys mainly consist of two phases: the La(La,Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The pressure-composition isotherms shows that the partial substitution of Mn for Ni results in lower desorption plateau pressure and steeper pressure plateau of the alloy electrodes. For a Mn content of x = 0.3, the electrochemical performances, including specific discharge capacity, high rate chargeability (HRC) and high rate dischargeability (HRD), of the alloy are preferable. Moreover, the data of the polarization resistance Rp and the exchange current density I0 of the alloy electrodes is consistent with the results of HRC and HRD. The hydrogen diffusion coefficient D increases with increasing Mn content, and thereafter increases the low temperature dischargeability (LTD) of the alloy electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号