首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility to functionalize selectively with thiols or disulfides the surface of the gold nanoelectrodes of polycarbonate templated nanoelectrode ensembles (NEEs) is studied. It is shown that the Au nanoelectrodes can be coated by a self assembled monolayer (SAM) of thioctic acid (TA) or 2-mercaptoethanesulfonic (MES) acid. The study of the electrochemical behavior of SAM-modified NEEs by cyclic voltammetry (CV) at different solution pH, using ferrocenecarboxylate as an anionic redox probe (FcCOO) and (ferrocenylmethyl)trimethylammonium (FA+) as a cationic redox probe, demonstrate that the SAM-modified nanoelectrodes are permselective, in that only cationic or neutral probes can access the SAM-coated nanoelectrode surface. CV, AFM and FTIR-ATR data indicate that proteins such as casein or bovine serum albumin, which are polyanionic at pH 7, adsorb on the surface of NEEs untreated with thiols, tending to block the electron transfer of the ferrocenyl redox probes. On the contrary, the pre-treatment of the NEE with an anionic SAM protects the nanoelectrodes from protein fouling, allowing the detection of well shaped voltammetric patterns for the redox probe. Experimental results indicate that, in the case of MES treated NEEs, the protein is bound only onto the polycarbonate surface which surrounds the nanoelectrodes, while the tips of the gold nanoelectrodes remain protein free.  相似文献   

2.
The ionic liquids (ILs) N-butyl-N-methyl-pyrrolidinium trifluoromethanesulfonate (PYR14Tf) and N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) are investigated as electropolymerization media for poly(3-methylthiophene) (pMeT) in view of their use in carbon/IL/pMeT hybrid supercapacitors. Data on the viscosity, solvent polarity, conductivity and electrochemical stability of PYR14Tf and PYR13FSI as well as the effect of their properties on the electropolymerization and electrochemical performance of pMeT, which features >200 Fg−1 at 60 °C when prepared and tested in such ILs, are reported and discussed; the results of the electrochemical characterization in N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide of the so-obtained pMeT are also given, for comparison.  相似文献   

3.
4.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

5.
The oxidation-reduction of the Ferri/Ferrocyanide couple in solution onto modified glassy carbon Rotating Disk Electrodes (RDE) covered by Os(II) bipyridile poly-vinylpyridile (OsBPP) polymer was studied at room temperature. Steady state polarization curves were carried out as a function of the rotation speed, the polymer thickness and the concentration of redox centers within the polymer. This system has the characteristic that the formal redox potentials of both the external redox couple (E0′(Fe(CN)63−/4−) = + 0.225 V vs. SCE) and the mediator polymer (E0′(OsBPP) = 0.260 V vs. SCE) lie very close. It is demonstrated that diffusion of the Ferri/Ferrocyanide inside the polymer can be ruled out. Since the processes of charge transfer at the metal/polymer and the mediating reaction are fast, the experimental results can be interpreted in terms of a kinetics in which the charge transport in the polymer or the diffusion in the solution may be the rate determining step, according to the experimental conditions. A simple model is considered that allows interpreting the experimental results quantitatively. Application of this model allows the determination of the diffusion coefficient of the electrons within the film, De ≈ 10−10 cm2 s−1.  相似文献   

6.
Various ionic liquids (ILs) were prepared via metathesis reaction from two kinds of 1-(2-hydroxyethyl)-3-methyl imidazolium ([HEMIm]+) and N-(2-hydroxyethyl)-N-methyl morphorinium ([HEMMor]+) cations and three kinds of tetrafluoroborate ([BF4]), bis(trifluoromethanesulfonyl)imide ([TFSI]) and hexafluorophosphate ([PF6]) anions. All the [HEMIm]+ derivatives were in a liquid state at room temperature. In particular, [HEMIm][BF4] and [HEMIm][TFSI] showed no possible melting point from −150 °C to 200 °C by DSC analysis, and their high thermal stability until 380-400 °C was verified by TGA analysis. Also, their stable electrochemical property (electrochemical window of more than 6.0 V) and high ionic conductivity (0.002-0.004 S cm−1) further confirm that the suggested ILs are potential electrolytes for use in electrochemical devices. Simultaneously, the [HEMMor]+ derivatives have practical value in electrolyte applications because of their easy synthesis procedures, cheap morpholinium cation sources and possibilities of high Li+ mobility by oxygen group in the morpholinium cation. However, [HEMMor]+ derivatives showing high viscosity usually had lower ionic conductivities than [HEMIm]+ derivatives.  相似文献   

7.
TEMPO (2,2,6,6-tetramethyl piperidine-1-oxyl) is electrochemically oxidized to a stable form of the cation (TEMPO+) in acetonitrile (CH3CN) or 1-butyl-3-methyl-imidazolium hexafluorophosphate ([BMIm][PF6]) media. Cyclic voltammograms were characterized by a well-defined one-electron reversible redox couple in both media at low scan rates. The reduced form of TEMPO+ is catalytically regenerated in a follow-up chemical reaction with benzyl alcohol (BA) in the presence of 2,6-lutidine. It was observed that in [BMIm][PF6], the redox currents are largely suppressed compared to that in CH3CN. The apparent heterogeneous electron-transfer rate constant () of the quasi-reversible redox reaction of TEMPO was determined at a Pt electrode and found to be 1.9 × 10−3 cm s−1 and 4.5 × 10−2 cm s−1 in [BMIm][PF6] and CH3CN, respectively. With the aid of chronoamperometry (CA), the homogeneous rate constant for the catalytic oxidation of benzyl alcohol by TEMPO, in the presence of 2,6-lutidine in CH3CN was estimated to be 5.53 × 101 M−1 s−1 which is approximately double, relative to the value of 2.91 × 101 M−1 s−1 determined in [BMIm][PF6].  相似文献   

8.
Fast and simple quantitative determination in dispersed systems (layered double hydroxides - LDHs - suspensions in aqueous solutions) was performed by a procedure that couples flow injection and amperometric detection (FI-AM). LDH dispersions are injected in a continuous flow (1 mL min−1) of 0.05 mol L−1 KNO3 solution and [Cu(H2O)6]2+, used as a probe, is detected at a glassy carbon electrode housed in a flat electrochemical cell. The current intensity, recorded at the selected working potential (−0.25 V vs Ag/AgCl/NaCl (3 mol L−1)), presents a linear relationship with [Cu(H2O)6]2+ concentration and the procedure offers high sensitivity (slope = 0.036 μA/(μmol L−1)), a low detection limit (=0.7 μmol L−1) and a wide quantification range (4-200 μmol L−1).The method was applied to [Cu(H2O)6]2+ determination in two particular LDH-aqueous solution dispersed systems: (1) [Cu(H2O)6]2+ scavenging by etilendiammintetraacetic acid (EDTA) modified Zn-Al-LDHs, and (2) [Cu(H2O)6]2+ release from a copper doped Mg-Al-LDHs. The results obtained are comparable to those reported in previous works using different quantification techniques. FI-AM determination is applied without sample pretreatment (solid-supernatant separation) providing a high sampling rate (above 120 samples h−1) that allows a better comprehension of the processes, particularly at the initial stages.  相似文献   

9.
Magnetic field effects in electrochemical reactions   总被引:1,自引:0,他引:1  
The influence of an external magnetic field B on the electrochemical behaviour of the systems Cu2+/Cu, Ni2+/Ni, and [IrCl6]2−/[IrCl6]3− has been studied. In the case of Cu depositions in an electrochemical cell with a large ratio of the electrode area and the cell volume the increase of the limiting current density with B can be explained with the interplay of natural convection and the Lorentz force acting on the resulting flow profile (magneto hydrodynamic or MHD effect). Ni depositions also show an MHD effect as well as a tendency to form more fine grained material in the presence of a magnetic field. The results on the homogeneous redox system [IrCl6]2−/[IrCl6]3− at 50 μm diameter micro electrodes are in qualitative agreement with recently proposed relationships to describe the influence of a B field on the limiting current density.  相似文献   

10.
Electrochemical activity, morphology and surface electrical conductivity of Boron-Doped Polycrystalline Diamond films prepared by MPCVD have been investigated. Heterogeneous apparent rate constants of three different redox systems, [Fe(CN)6]3−/4−, [IrCl6]2−/3− and [Ru(NH3)6]3+/2+ have been measured by both Cyclic Voltammetry and Electrochemical Impedance Spectroscopy on < 100 > textured films with a predominance of (111) faces: first measurements have been done with [Fe(CN)6]3−/4− only on as grown samples, and secondly after a mild electrochemical pretreatment the three redox systems have been investigated. “As-grown” samples showed a moderate average activity which was related to the presence of a minority of electronically conducting areas among insulating zones. Electrochemical treatment in neutral conditions substantially increased the activity and heterogeneous apparent rate constants kapp for the three couples were measured in the range of 10− 2 cm s− 1 with a good stability in time. Current-sensing AFM images performed ex situ showed that the electrochemically pre-treated material presented a high superficial conductivity whereas the grown sample showed major area of low conductivity.  相似文献   

11.
We report the electrochemical characterization of chitosan films deposited at gold electrodes from an acidic solution at reducing potentials. Cyclic voltammetry was used to characterize the deposition and electroactivity of chitosan coated gold electrodes. Chitosan films were found to deposit at gold electrodes at potentials more negative than −1.0 V versus Ag/AgCl, a potential associated with the onset of water reduction and increase in pH near the electrode. The chitosan films are electrochemically inactive; similar background charging currents are observed at bare gold and chitosan coated electrodes. The chitosan films are permeable to both cationic [Ru(NH3)63+/2+] and anionic [Fe(CN)63−/4−] redox couples, but anionic complexes are retained in the chitosan film. Semiintegral analysis was used to examine adsorbed redox species at the chitosan coated electrode surface. Electrochemical parameters, including apparent diffusion coefficients for the redox probes at the electrodeposited chitosan modified electrodes are presented and are comparable to values reported for cast chitosan films.  相似文献   

12.
The α- and γ-phases of MnO2 prepared by electrolysis of MnSO4 and MxSO4 (where M = Li+, Na+, K+, Rb+, Cs+ or Mg2+) in aqueous solutions at various pH and voltage Ev values under ambient conditions have been systematically studied. The structures of powdery MnO2 produced are found to depend on the radius of the Mz+ counter cation in addition to the pH and Ev conditions. In order to achieve the α-phase for MnO2 formation under neutral pH condition, the radius of counter cation must be equal to or greater than 1.41 Å, the size of the K+ cation. The relative concentration ratio of [MnO4]transient/[Mn2+], which is related to the pH-Ev conditions, also affects the structure of MnO2 produced with counter ions smaller than K+. For samples prepared in acidified solution with the counter ions of Li+, Na+ or Mg2+ at 2.2 V, the electrolysis products display the γ-MnO2 phase while those prepared at 2.8 V electrolysis produce a mixture of γ-MnO2 and α-MnO2 phases. Single phase of α-MnO2 is identified in the 5 V electrolysis products. Furthermore, the valence state of manganese was found to decrease as the applied voltage was reduced from 5.0 to 2.2 V. This implies that the lower [MnO4]transient/[Mn2+] ratio or the less oxidative condition is responsible for the non-stoichiometric MnO2 structure with oxygen deficiency.  相似文献   

13.
N-ethyl-imidazolium-based alkylphosphate ionic liquid (IL), viz. N-ethyl-N-methyl-imidazolium dimethylphosphate ([EMIM][DMP]), N-ethyl-N-ethyl-imidazolium diethylphosphate ([EEIM][DEP]) and N-butyl-N-ethyl-imidazolium dibutylphosphate ([BEIM][DBP]) were demonstrated to be effective for the removal of aromatic sulfur compounds (S-compound) 3-methylthiophene (3-MT), benzothiophene (BT) and dibenzothiophene (DBT) from fuel oils in terms of sulfur partition coefficients (KN) at 298.15 K. It was shown that the extractive ability of the alkylphosphate ILs was dominated by the structure of the cation and followed the order [BEIM][DBP] > [EEIM][DEP] > [EMIM][DMP] for each S-compound studied with their KN-value being 1.72, 1.61 and 1.17, respectively for DBT. For a specified IL the sulfur selectivity followed the order DBT > BT > 3-MT with their KN-value being 1.61, 1.39 and 0.78, respectively for [EEIM][DEP]. The alkylphosphate ILs are insoluble in fuel while the fuel solubility in ILs varies from 20.6 mg(fuel)/g(IL) for [EMIM][DMP] to 266.9 mg(fuel)/g(IL) for [BEIM][DBP]. The results suggest that [EEIM][DEP] might be used as a promising solvent for the extractive desulfurization of fuel, considering its higher sulfur extractive ability, lower solubility for fuel and thus negligible influence on the constituent of fuel, and the ease of regeneration for the spent IL via water dilution process.  相似文献   

14.
Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts’ electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4′-diamino-2,2′bipyridine)2(poly{N-vinylimidazole})-(poly{N-vinylimidazole})9Cl]Cl (E0′ = −0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline)2(poly{N-vinylimidazole})2-(poly{N-vinylimidazole})8]Cl2 (E0′ = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 °C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm2 at 0.4 V (pH 5.5) and 10 μW/cm2 at 0.3 V (pH 4.4).  相似文献   

15.
The electrochemical behaviour of fluorinated bis(cyclopentadienyl) mono(β-diketonato) titanium(IV) complexes, of general formula [Cp2Ti(R′COCHCOR)]+ClO4 with Cp = cyclopentadienyl and R′, R = CF3, C4H3S; CF3, C4H3O; CF3, Ph (C6H5); CF3, CH3; CH3, CH3; Ph, Ph and Ph, CH3 is described. Both metal and ligand based redox processes are observed. The chemically and electrochemically reversible TiIV/TiIII couple is followed by an irreversible ligand reduction at a considerably more negative (cathodic) potential. A comparison of the ligand reduction in its free and chelated state indicates that the β-diketonato ligand (R′COCHCOR) in [Cp2Ti(R′COCHCOR)]+ClO4 is electroactive at more negative potentials. A theoretical density functional theory (DFT) study shows that a highly localized metal centred frontier orbital dominates the TiIV/TiIII redox chemistry resulting in a non-linear relationship between the formal redox potential (E°′) and the sum of the group electronegativities of the R and R′ groups, χR + χR′, of the ligand. Linear relationships, however, are obtained between the DFT calculated electron affinity (EA) of the complexes and χR + χR′, the pKa of the free β-diketones R′COCH2COR and the carbonyl stretching frequency, vCO, of the complexes. The DFT calculated electronic structure of the second reduced species [Cp2Ti(β-diketonato)] shows that it is best described as Ti(III) coupled to a β-diketonato radical.  相似文献   

16.
N-butylimidazole-derived dialkylphosphate ionic liquids (ILs) are demonstrated to be effective for extractive removal of aromatic sulfur compounds (S-compounds) from fuel oils, and show strong preferential extraction for aromatic S-compound versus toluene. Sulfur partition coefficients (KN) between IL and fuel oil at 298.15 K are determined experimentally over a wide range of sulfur content. The results show that the sulfur removal selectivity for a specific IL is dependent on the molecular structure of the S-compounds and follows the order dibenzothiophene > benzothiophene > thiophene > 3-methylthiophene, and the efficiency of the ILs for removal of aromatic S-compounds is dependent on the size and structure of both cations and anions of the ILs. For the dialkylphosphate ILs studied with the same anion, the longer the alkyl substitute to the imidazolium ring is the higher the KN value for that IL, and a similar trend is found for the ILs with same cation.  相似文献   

17.
A novel electrode material was obtained at an aluminum electrode (Al) by a simple electroless method including two consecutive procedures: (i) the electroless deposition of metallic palladium on the Al electrode surface from PdCl2 + 25% ammonia solution and (ii) the chemical transformation of deposited palladium to the palladium hexacyanoferrate (PdHCF) films in a solution containing 0.5 M K3[Fe(CN)6]. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of dopamine (DA). The effect of solution pH on the voltammetric response of DA has been investigated. A linear calibration graph was obtained over the DA concentration range 2-51 mM. The rate constant k and transfer coefficient α for the catalytic reaction and the diffusion coefficient of DA in the solution D, were found to be 4.67 × 102 M−1 s−1, 0.63 and 2.5 × 10−6 cm2 s−1, respectively. The interference of ascorbic acid was investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

18.
Surface functionalised carbon nanoparticles of ca. 8 nm diameter co-assemble with chitosan into stable thin film electrodes at glassy carbon surfaces. Robust electrodes for application in sensing or electrocatalysis are obtained in a simple solvent evaporation process. The ratio of chitosan binder backbone to carbon nanoparticle conductor determines the properties of the resulting films. Chitosan (a poly-d-glucosamine) has a dual effect (i) as the binder for the mesoporous carbon composite structure and (ii) as binding site for redox active probes. Physisorption due to the positively charged ammonium group (pKA ≈ 6.5) occurs, for example, with anionic indigo carmine (a reversible 2e-2H+ reduction system in aqueous media). Chemisorption at the amine functionalities is demonstrated with 2-bromo-methyl-anthraquinone in acetonitrile (resulting in a reversible 2e-2H+ anthraquinone reduction system in aqueous media). Redox processes within the carbon nanoparticle-chitosan films are studied and at sufficiently high scan rates diffusion of protons (buffer concentration depended) is shown to be rate limiting. The chemisorption process provides a much more stable interfacial redox system with a characteristic and stable pH response over a pH 2-12 range. Chemisorption and physisorption can be employed simultaneously in a complementary binding process.  相似文献   

19.
Co-Sn alloys were prepared by an electrochemical route in molten LiCl-KCl between 400 and 550 °C. The Sn(IV)/Sn(II), Sn(II)/Sn(0) and Co(II)/Co(0) redox couples were studied by cyclic voltammetry and/or chronopotentiometry over the temperature range. The diffusion coefficient values of Co(II) ions were measured. For example, it was found that the DCo(II) values deduced from chronopotentiometry range from DCo(II) = 1.65 × 10−5 cm2 s−1 at 400 °C to 4.95 × 10−5 cm2 s−1 at 550 °C. The standard potential of the Co(II)/Co(0) redox couple in molten LiCl-KCl was measured at 400 °C: vs Cl2/Cl. Finally, Co-Sn alloys were prepared in potentiostatic mode. The influence of the temperature of molten LiCl-KCl, the applied potential and the deposition time on the morphology and the composition of the Co-Sn alloys were also investigated. For T > 450 °C, the following tendency has been observed: the more negative the potential, the higher the Sn content in the deposited alloy. Thus, depending on the operating conditions, pure CoSn or CoSn2 can be prepared.  相似文献   

20.
The interactions of promethazine hydrochloride (PZH) with thiolated single-stranded DNA (HS-ssDNA) and double-stranded DNA (HS-dsDNA) self-assembled on gold electrodes have been studied electrochemically. The binding of PZH with ssDNA shows a mechanism containing an electrostatic interaction, while the mode of PZH interaction with dsDNA contains both electrostatic and intercalative bindings. The redox system belongs to the category of diffusion control approved by cyclic voltammetry (CV). The diffusion coefficients of PZH at the bare, HS-dsDNA and HS-ssDNA modified gold electrodes decrease regularly as 1.34 × 10−3 cm2 s−1, 1.04 × 10−3 cm2 s−1, 7.47 × 10−4 cm2 s−1, respectively. The electron transfer standard rate constant ks of PZH at bare gold, HS-ssDNA and HS-dsDNA modified electrodes are 0.419 s−1, 0.131 s−1, and 0.154 s−1, respectively. The presence of adsorbed dsDNA results in a great increase in the peak currents of PZH in comparison with those obtained at a bare or ssDNA adsorbed gold electrode. The difference between interactions of PZH with HS-ssDNA and HS-dsDNA has been used for hybridization recognition of 14-mer DNA oligonucleotide. The peak current (ipa) of PZH is linearly proportional to the logarithmic concentration of complementary target DNA in the range from 2.0 × 10−9 mol L−1 to 5.0 × 10−7 mol L−1 with the detection limit of 3.8 × 10−10 mol L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号