首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From mixed (anatase and rutile) bulk particles, anatase TiO2 nanotubes are synthesized in this study by an alkaline hydrothermal reaction and a consequent annealing at 300-400 °C. The physical and electrochemical properties of the TiO2 nanotube are investigated for use as an anode active material for lithium-ion batteries. Upon the first discharge-charge sweep and simultaneous impedance measurements at local potentials, this study shows that interfacial resistance decreases significantly when passing lithium ions through a solid electrolyte interface layer at the lithium insertion/deinsertion plateaus of 1.75/2.0 V, corresponding to the redox potentials of anatase TiO2 nanotubes. For an anatase TiO2 nanotube containing minor TiO2(B) phase obtained after annealing at 300 °C, the high-rate capability can be strongly enhanced by an isotropic dispersion of TiO2 nanotubes to yield a discharge capacity higher than 150 mAh g−1, even upon 100 cycles of 10 C-rate discharge-charge operations. This is suitable for use as a high-power anode material for lithium-ion batteries.  相似文献   

2.
The suspensions of hydroxyapatite (HA) nanoparticles were prepared in different alcohols. The zeta potential of HA nanoparticles was the highest in butanolic suspension (65.65 mV) due to the higher adsorption of RCH2OH2+ species via hydrogen bonding with surface P3OH group of HA. Electrophoretic deposition was performed at 20 and 60 V/cm for different times. Deposition rate was faster in low molecular weight alcohols due to the higher electrophoretic mobility of HA nanoparticles in them. The coating deposited from butanolic suspension had the highest adhesion strength and corrosion resistance in SBF solution at 37.5 °C. The surface of this coating was covered by apatite after immersion in SBF solution for 1 week.  相似文献   

3.
Nanorods TiO2, Fe-TiO2 (3 and 2 at.% Fe), V-TiO2 (5 at.% V) were prepared by a low temperature method and characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and BTE surface area analysis. The as-prepared samples were evaluated as catalysts for photodegradation of Congo red aqueous solution under the sunlight. Nanorods Fe-doped TiO2 shows higher adsorption and also higher photocatalytic degradation of Congo red solution compared to pure nanorods TiO2 rutile. A higher activity is obtained when the amount of doped Fe is 2 at.%, compared to 3 at.%. However, nanorods V-TiO2 does not show neither adsorption nor photodegradation activity of Congo red solution.  相似文献   

4.
《Ceramics International》2016,42(6):6942-6954
Inadequate mechanical properties of pure hydroxyapatite (HA) coating layers make it an unsuitable candidate for many load-bearing orthopedic implants. In this study, Titania nanotubes (TNT) and HA were synthesized using Rapid Breakdown Adonization (RBA) and sol–gel methods, respectively. The sintering process at different temperatures was then conducted for the phase transformation of titanium. HA–TNT mixtures in different quantities and phases were prepared for coating on Co–Cr-based substrates. To optimize the coated HA–TNT composite layer in term of hardness, bonding strength and corrosion potential, empirical models based on Response Surface Methodology (RSM) were developed. The synthesized TNT and HA–TNT coated samples were characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscopy (TEM). The predicted models generated by RSM were compared with the experimental results, and close agreement was observed. While the models demonstrate that TNT quantity is a more significant factor than sintering temperature in improving hardness (H), bonding strength (P) and the corrosion potential (Ecorr) of a coated substrate, sintering temperature still has a considerable effect on H and Ecorr. The optimum HA–TNT composite coating layer in terms of the mechanical and electrochemical properties were obtained with a TNT ratio of 1.07 (wt%) at a sintering temperature of 669.11 °C.  相似文献   

5.
TiO2, SiO2, hydroxyapatite (HA), TiO2–HA and SiO2–HA thin films with good biocompatibility were grown on Ti–6Al–4V (coded as TC4) substrate by sol–gel and dip-coating processes from specially formulated sols, followed by annealing at 500 °C. The chemical states of some typical elements in the target films were detected by means of X-ray photoelectron spectroscopy (XPS). High-resolution scanning electron microscopy (SEM) is applied to characterize the surface and cross-sectional morphologies of obtained films. Various phases of the films were characterized by XRD. The tribological properties of thin films sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As a result, the target films were obtained. Compared with the TC4 substrate, all the sol–gel ceramic films are superior in resisting wear. Among all, HA film shows the best resistance while SiO2 film shows the worst wear resistance both under higher (3 N) and lower load (1 N). TiO2 shows a good wear resistance under lower load but higher load. Compared with TiO2, the wear resistance of the dual film TiO2–HA can be improved under 3 N but deteriorated under 1 N. Compared with SiO2, the wear resistance of SiO2–HA is improved both under 3 N and 1 N. Compared with HA, the wear resistances of dual films are deteriorated both under 3 N and 1 N. Under 0.5 N, a very long wear life for TiO2–HA is also obtained, illustrating that the lower wear resistance of dual films is closely related to the applied load. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characterized by abrasive wear. Differently, abrasion, plastic deformation and micro-crack dominate the wear of ceramic films. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. Sol–gel is a potential method being applied to implant materials for wear protection according to proper process designs. The single HA film and the dual TiO2–HA film is suggested for biomedical application from the point of view of wear protection.  相似文献   

6.
TiO2 varistors doped with 0.2 mol% Ca, 0.4 mol% Si and different concentrations of Ta were obtained by ceramic sintering processing at 1350 °C. The effect of Ta on the microstructures, nonlinear electrical behavior and dielectric properties of the (Ca, Si, Ta)-doped TiO2 ceramics were investigated. The ceramics have nonlinear coefficients of α = 3.0–5.0 and ultrahigh relative dielectric constants which is up to 104. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 0.8 mol% Ta2O5 leads to a low breakdown voltage of 14.7 V/mm, a high nonlinear constant of 4.8 and an ultrahigh electrical permittivity of 5.0 × 104 and tg δ = 0.66 (measured at 1 kHz), which is consistent with the highest and narrowest grain boundary barriers of the ceramics. In view of these electrical characteristics, the TiO2–0.8 mol% Ta2O5 ceramic is a viable candidate for capacitor–varistor functional devices. The characteristics of the ceramics can be explained by the effect and the maximum of the substitution of Ta5+ for Ti4+.  相似文献   

7.
A simple chemical bath method was used to deposit hydroxyapatite (HA) coatings on Al2O3, Ti, and Ti6Al4V substrates at ambient pressure by heating to 65–95 °C in an aqueous solution prepared with Ca(NO3)2·4H2O, KH2PO4, KOH, and EDTA. The deposition behavior, morphology, thickness, and phase of the coatings were investigated using scanning electron microscopy and X-ray diffractometry. The bonding strength of the coatings was measured using an epoxy resin method. The HA coatings deposited on the three kinds of substrates were fairly dense and uniform and exhibited good crystallinity without any additional heat treatment. A coating thickness of 1–1.8 μm was obtained for the samples coated once. By repeating the coating process three times, the thickness could be increased to 4.5 μm on the Al2O3 substrate. The bonding strength of these coatings was 18 MPa.  相似文献   

8.
V.C. Anitha 《Electrochimica acta》2010,55(11):3703-9284
The electrochemical behavior of fluorine containing electrolytes and its influence in controlling the lateral dimensions of TiO2 nanotubes is thoroughly investigated. Potentiostatic anodization is carried out in three different electrolytes, viz., aqueous hydrofluoric acid (HF), HF containing dimethyl sulphoxide (DMSO) and HF containing ethylene glycol (EG). The experiments were carried out over a broad voltage range from 2 to 200 V in 0.1-48 wt% HF concentrations and different electrolytic compositions for anodization times ranging from 5 s to 70 h. The chemistry that dictates how the nature of electrolytes influences the morphology of nanotubes is discussed. Electrochemical impedance spectra were recorded for varying compositions of all the electrolytes. It was observed that composition of the electrolyte and its fluorine inhibiting nature has significant impact on nanotube formation as well as in controlling the aspect ratio. The inhibiting nature of EG is helpful in holding fluorine at the titanium anode, thereby allowing controlled etching at appropriate voltages. Thus our study demonstrates that HF containing EG is a promising electrolytic system providing wide tunability in lateral dimensions and aspect ratio of TiO2 nanotubes by systematically varying the anodization voltage and electrolyte composition.  相似文献   

9.
The preparation of silica-doped high aspect-ratio TiO2 nanotubes and their apatite-forming ability were demonstrated in this study. The high aspect-ratio TiO2 nanotube layers were produced by electrochemical anodic oxidation of Ti in chloride-containing electrolytes. Nanotubes were doped with different concentrations of silica particles through anodization in NaCl electrolyte containing different concentrations of water glass (24 g/L or 48 g/L Na2SiO3). The biomimetic apatite deposition behavior was evaluated under simulated body fluid (SBF) with an ion concentration nearly equal to human blood plasma. The experimental results collectively demonstrate the successful silica doping of the resultant nanotube layers with significant abundant OH groups on their surfaces. The results of hydroxyapatite (HA) growth on nanotubes clearly show that the silica doping greatly enhances the fast nucleation and growth of HA, especially for the tubes in their “as-formed” amorphous state, which usually require a long time for apatite induction. The nanotubes doped with high silica content combined with an anatase or a mixture of anatase and rutile led to the formation of very thick and continuous apatite layers with a thickness of ∼7 μm in 21 days. In contrast, to the tubes doped with a low concentration of silica (grown in an electrolyte containing 24 g/L Na2SiO3), the HA deposited in the form of closely packed spheroid particles and never developed into continuous films. This effect could be attributed to the critical active-site density (silanol groups, >Si-OH), which provides the sterochemical match for apatite growth. Finally, the results of this study provide, for the first time, evidence for the dependence of HA morphology/microstructure on the crystallographic structure and the density of active sites (>Si-OH groups).  相似文献   

10.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

11.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

12.
A low temperature (<150 °C) fabrication method for preparation of TiO2 porous films with high efficiency in dye-sensitized solar cells (DSSCs) has been developed. The Ti(IV) tetraisopropoxide (TTIP) was added to the paste of TiO2 nanoparticles to interconnect the TiO2 particles. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) and electron lifetime in the TiO2 film (τe) under different molar ratios of TTIP/TiO2 and also at various TiO2 thicknesses. It was found that the Rct2 decreased as the molar ratio increased from 0.02 to 0.08, however, it increased at a molar ratio of 0.2 due to the reduction in surface area for dye adsorption. In addition, the characteristic frequency peak shifted to lower frequency at a molar ratio of 0.08, indicating the longer electron lifetime. As for the thickness effect, TiO2 film with a thickness around 17 μm achieved the best cell efficiency. EIS study also confirmed that, under illumination, the smallest Rct2 was associated with a TiO2 thickness of 17 μm, with the Rct2 increased as the thickness of TiO2 film increased. In the Bode plots, the characteristic frequency peaks shifted to higher frequency when the thickness of TiO2 increased from 17.2 to 48.2 μm, indicating the electron recombination increases as the thickness of the TiO2 electrode increases.Finally, to make better use of longer wavelength light, 30 wt% of larger TiO2 particle (300 nm) was mixed with P25 TiO2 as light scattering particles. It effectively increased the short-circuit current density and cell conversion efficiency from 7.44 to 8.80 mA cm−2 and 3.75 to 4.20%, respectively.  相似文献   

13.
We show that an ionic liquid consisting of imidazolium salt with a BF4 counter ion (BMIM-BF4) can directly be used to grow well-defined layers of self-organized TiO2 nanotubes. For this a Ti metal substrate is anodized in this electrolyte for potential range between 3 VAg/AgCl and 10 VAg/AgCl without addition of free fluoride species (fluorides are used in all previous tube growth procedures). Key factors that influence the morphology and geometry of the resulting nanotubular layer are the anodic potential, the anodization time and particularly the water content in the ionic liquid. The resulting nanotubes layers have thickness in the range of approximately 300-650 nm; with individual tubes that have diameters between 27 nm and 43 nm.  相似文献   

14.
《Ceramics International》2022,48(14):19937-19943
Titanium with a bioceramic hydroxyapatite (HA) coating has been widely used in biomaterials owing to its excellent mechanical characteristics and high osteoconductivity. However, the interfacial strength of Ti/HA prepared by electrochemical deposition (ED) is relatively low because the physical combination is typically inadequate. In this study, to improve the interfacial strength, a micro-arc oxidation (MAO) process with calcium was introduced for preparing a connecting interlayer known as the MAO coating. Pulsed ED was employed to synthesise the HA coating on the MAO surface using an electrolyte with 6 wt% H2O2. Sample characterisations revealed that the MAO coating comprised porous TiO2 (rutile and anatase) with Ca or CaTiO3. The formation of CaTiO3 depends on the current density, reaction time, and concentration of Ca2+, in addition to voltage. The MAO coatings exhibited a higher corrosion resistance than that exhibited by Ti substrates. Furthermore, the HA coating on the MAO coating was confirmed to be plate-like Ca-deficient HA. The final sample had a Ti/TiO2(Ca)/HA structure, and its adhesive strength was approximately double that of the Ti/HA sample. In particular, the MAO coating synthesised at a high Ca2+ concentration exhibited an improved adhesive strength (2.326 MPa). The application of the MAO coating containing Ca as a connecting interlayer is a promising strategy for improving the HA adhesion strength.  相似文献   

15.
Min Tian 《Electrochimica acta》2009,54(14):3799-69
We report on the kinetics of photoelectrochemical oxidation of salicylic acid (SA) and salicylaldehyde (SH) on titanium dioxide nanotube arrays. The TiO2 nanotubes were prepared by the electrochemical oxidation of titanium substrates in a nonaqueous electrolyte (DMSO/HF). Scanning electron microscopy (SEM) was employed to examine the morphology of the formed nanotubes. Linear voltammetry was used to study the electrochemical and photoelectrochemical behavior of the synthesized TiO2 nanotube arrays. The photoelectrochemical oxidation of SA and SH on the TiO2 nanotubes was monitored by in situ UV-vis spectroscopy, showing that the kinetics of the photoelectrochemical oxidation of SA and SH follows pseudo first-order and that the rate constant of SH oxidation is 1.5 times larger than that of SA degradation. Quantum chemical calculations based on the DFT method were performed on SA and SH to address the large difference in kinetics. The relatively higher ELUMO − EHOMO makes SA more stable and thus more difficult to be oxidized photoelectrochemically. The impact of temperature and initial concentrations on the kinetics of SA and SH photoelectrochemical degradation was also investigated in the present work.  相似文献   

16.
The process of removal of two azo dyes (Reactive Red 198 and Direct Green 99) from water was investigated. The adsorption of azo dyes onto surfaces of pristine TiO2, P25 and carbon-modified TiO2 (at 120 °C for 24 h) was presented. The Freundlich model of adsorption isotherm was found for pristine TiO2 and TiO2-P25. Modification of TiO2 by carbon lead to the change from the Freundlich model to the Langmuir model of adsorption isotherm. For the TiO2-C photocatalyst the adsorption capacity was determined, which was almost two times higher for Direct Green 99 than Reactive Red 198 dyes. As a result we observed the increase of photocatalytic activity of carbon-modified TiO2 photocatalyst.  相似文献   

17.
Using a blend heterojunction consisting of a C60 derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and poly(3-hexylthiophene) (P3HT) as a charge carrier transfer medium to replace the I3/I redox electrolyte, a novel TiO2/dye/PCBM/P3HT dye-sensitized solar cell was fabricated and characterized. It was found that the P3HT/PCBM heterojunction widened the incident light harvest range from ultraviolet to visible light, and improved the photoelectrical response of the dye-sensitized solar cell. We investigated the influence of the PCBM/P3HT ratio and barrier layer on the photoelectric performance of the solar cell and proposed optimized preparation conditions. The optimized solar cell with a barrier layer and PCBM/P3HT ratio of 1:2 had a short circuit current density of 5.52 mA cm−2, an open circuit voltage of 0.87 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 3.09% under a simulated solar light irradiation of 100 mW cm−2.  相似文献   

18.
Titanium nanotubes (TNTs)-confined ceria were for the first time prepared in this paper and used for selective catalytic reduction (SCR) of NO with ammonia. In comparison with the catalysts supported by TiO2 nanoparticles, the confined ceria showed a superiority in SCR of NO due to the improved redox potential and special adsorption of NH3, where its NO conversion could exceed 95% at reaction temperature of 270–500 °C, which was much higher than that of TiO2 nanoparticle supported catalysts.  相似文献   

19.
Anatase type TiO2 has been previously largely reported as a candidate negative electrode material for lithium-ion batteries. We report here for the first time the complete in situ Raman study of lithium insertion and de-insertion into three variously nano-sized TiO2 anatase powders (Prolabo, ca. 80 nm, AK1, ca. 15 nm and MTi5 ca. 8 nm), of which AK1 and MTi5 show superior capacity and cyclability. From these measurements realized in a galvanostatic mode between 3 and 1 V versus Li/Li+, the phase transition from a tetragonal to an orthorhombic structure was clearly observed to take place at different quantities of x in LixTiO2. These results confirm the extension of the solid solution domain as particle size is reduced. For the smaller TiO2 nano-sized materials (AK1 and MTi5), a more pronounced decrease in band intensity when x > 0.3 for LixTiO2, was observed and may be related to the decrease in the optical skin depth linked to the conductivity increase as lithiation proceeds.  相似文献   

20.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号