首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
C. Lai 《Electrochimica acta》2010,55(15):4567-1205
A functional composite as anode materials for lithium-ion batteries, which contains highly dispersed TiO2 nanocrystals in polyaniline matrix and well-defined mesopores, is fabricated by employing a novel one-step approach. The as-prepared mesoporous polyaniline/anatase TiO2 nanocomposite has a high specific surface area of 224 m2 g−1 and a predominant pore size of 3.6 nm. The electrochemical performance of the as-prepared composite as anode material is investigated by cyclic voltammograms and galvanostatic method. The results demonstrate that the polyaniline/anatase nanocomposite provides larger initial discharge capacity of 233 mAh g−1 and good cycle stability at the high current density of 2000 mA g−1. After 70th cycles, the discharge capacity is maintained at 140 mAh g−1. The excellent electrochemical performance of the polyaniline/TiO2 nanocomposite is mainly attributed to its special structure. Furthermore, it is accessible to extend the novel strategy to other polymer/TiO2 composites, and the mesoporous polypyrrole/anatase TiO2 is also successfully fabricated.  相似文献   

2.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

3.
Meldola blue immobilized on a new SiO2/TiO2/graphite composite was applied in the electrocatalytic oxidation of NADH. The materials were prepared by the sol-gel processing method and characterized by several techniques including scanning electronic microscopy coupled to energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electronic microscopy (HRTEM). Si and Ti mapping profiles on the surface showed a homogeneous distribution of the components. Ti2p binding energy peaks indicate that the formation of Si-O-Ti linkage is presumably the responsible for the high rigidity of the matrices. The good electrical conductivity presented by the composites (5 and 11 S cm−1) can be related to a homogeneous distribution of graphite particles observed by TEM. After the materials characterization, a SiO2/TiO2/graphite electrode was prepared and some chemical modifications were performed on its surface to promote the adsorption of meldola blue. The resulting system presented electrocatalytic properties toward the oxidation of NADH, decreasing the oxidation potential to −120 mV. The proposed sensor showed a wide linear response range from 0.018 to 7.29 mmol l−1 and limit of detection of 0.008 mmol l−1. SiO2/TiO2/graphite has shown to be a promising material to be used as a suitable support in the construction of new electrochemical sensors.  相似文献   

4.
Ag nanoparticles highly dispersed into TiO2 thin films are synthesized via a remarkably simple one-pot route in the presence of a P123 triblock copolymer as template directing and reducing agents, where the reduction of Ag+ to Ag0 by in situ heat-induced reduction through the oxidation of template at 400 °C and the controlled polymerization of TiO2 take place simultaneously. The obtained mesoporous Ag/TiO2 films deposited on soda-lime glass were optically transparent and crack-free. SEM and Kr adsorption clearly prove that Ag/TiO2 films at different Ag contents are mesoporous with large surface area and regularly ordered mesopores and the thickness of the obtained films is ∼280 ± 20 nm. The pristine TiO2 film exhibits a specific surface area of 63 cm2/cm2 and specific pore volume of 0.013 mm3/cm2 that it is decreased to 42 cm2/cm2 and 0.010 mm3/cm2 respectively as a result of Ag-loaded mesoporous TiO2. The newly prepared photocatalysts Ag/TiO2 films were evaluated for their photocatalytic degradation of 2-chlorophenol as a model reaction. It was found that the meso-ordered Ag/TiO2 films are more photoactive 8 times than nonporous commercial photocatalysts Pilkington Glass Activ™. The recycling tests indicated that Ag/TiO2 films was quite stable during that liquid-solid heterogeneous photocatalysis since no significant decrease in activity was observed even after being used repetitively for 10 times, showing a good potential in practical application. In general, the cubic mesoporous Ag/TiO2 nanocomposites are stable and can be recycled without loss of their photochemical activity.  相似文献   

5.
The TiO2 support materials were synthesized by a chemical vapor condensation (CVC) method and the subsequent MnOx/TiO2 catalysts were prepared by an impregnation method. Catalytic oxidation of toluene on the MnOx/TiO2 catalysts was examined with ozone. These catalysts had a smaller particle size (9.1 nm) and a higher surface area (299.5 m2 g−1) compared to MnOx/P25-TiO2 catalysts. The catalysts show high catalytic activity with the ozone oxidation of toluene even at low temperature. As a result, the synthesized support material by the CVC method gave more active catalyst.  相似文献   

6.
Asymmetric TiO2 hybrid photocatalytic ceramic membranes with porosity gradient have been fabricated via acid-catalyzed sol–gel method. Different structure directing agents (SDAs) i.e. Pluronic P-123, Triton X-100, Tween 20 and Tween 80 were incorporated in the preparation of TiO2 sol to obtain a porous multilayered TiO2 coated on the alumina ceramic support. Six different SDA-modified membrane specimens were fabricated. Four of which were coated with the TiO2 sols prepared using only one type of SDA. The remaining two specimens were fabricated via multilayer coating of different TiO2 sols prepared using different types of SDAs. Physico-chemical and morphological properties of different TiO2 layers were thoroughly investigated. The membrane M1 which had the most porous TiO2 sub-layers showed a high pure water permeability of 155 L m−2 h−1 bar−1. The membrane showed a relatively high Rhodamine B (RhB) removal of 2997 mg m−2 over 8 h treatment duration in the batch photoreactor, second only to the Pluronic-based TiO2 membrane (specific RhB removal of 3050 mg m−2). All membrane specimens exhibited good performances while operated in the flow-through photocatalytic membrane reactor. Over 91% of RhB removal capability was retained after 4 treatment cycles. All membranes also showed self-cleaning property by retaining >90% of initial flux after 4 treatment cycles. The flexibility of optimizing membrane performances by fine-tuning the porosity gradient configuration of the photocatalytic layer has also been demonstrated.  相似文献   

7.
Qian Zhang 《Powder Technology》2011,212(1):145-150
TiO2 hollow spheres of controlled size were synthesized by combined acid catalytic hydrolysis and hydrothermal treatment, which involves the deposition of an inorganic coating of TiO2 on the surface of carbon spheres prepared by a hydrothermal method and subsequent removal of the carbon spheres by calcination in air. The obtained TiO2 hollow spheres were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and powder X-ray diffraction. The results revealed that the size and surface morphology of the TiO2 hollow spheres can be controlled by adjusting the concentration of the aqueous solution of glucose used to produce the template carbon spheres. Increasing the concentration of the glucose solution increased the average diameter of the TiO2 hollow spheres from 190 to 300 nm. TiO2 hollow spheres prepared using a glucose solution with a concentration of 0.7 mol/L are uniform in size with a diameter of 220 nm and shell thickness of 28 nm. The phenol removal rate of the sample prepared by calcination at 600 °C is 1.35 times higher than that of TiO2 made by the same method without using the carbon template.  相似文献   

8.
Anatase TiO2 nanowires containing minor TiO2(B) phase were prepared by a hydrothermal chemical reaction followed by the post-heat treatment at 400 °C. The phase structure and morphology were analyzed by X-ray diffraction, Raman scattering, transmission electron microscope, and field-emission scanning electron microscopy. The electrochemical properties were investigated by employing constant current discharge-charge test, cyclic voltammetry, and electrochemical impedance techniques. These nanowires exhibited high rate capacity of 280 mAh g−1 even after 40 cycles, and the coulombic efficiency was approximately 98%, indicating excellent cycling stability and reversibility. The electrochemical impedance spectra showed a stable kinetic process of the electrode reaction. These results indicated that the TiO2 nanowires have promising application for high energy density lithium-ion batteries.  相似文献   

9.
Ag–TiO2 nanocatalyst, supported on multi-walled carbon nanotubes, was synthesized successfully via a modified sol–gel method, and the prepared photocatalyst was used to remediate aqueous thiophene environmentally by photocatalytic oxidation under visible light. The prepared Ag–TiO2/multi-walled carbon nanotubes nanocomposite photocatalyst was characterized through X-ray diffraction, Brunauer–Emmett–Teller (BET), transmission electron microscopy, and UV–vis spectra (UV–vis). The results showed that both Ag and TiO2 nanoparticles were well-dispersed over the MWCNTs and formed a uniform nanocomposite. Ag doping can eliminate the recombination of electron–hole pairs in the catalyst, and the presence of MWCNTs in the TiO2 composite can change surface properties to achieve sensitivity to visible light. The optimum mass ratio of MWCNT:TiO2:Ag was 0.02:1.0:0.05, which resulted in the photocatalyst's experimental performance in oxidizing about 100% of the thiophene in a 600 mg/L solution within 30 min and with 1.4 g L−1 amount of catalyst used.  相似文献   

10.
A visible light active binary SnO2-TiO2 composite was successfully prepared by a sol-gel method and deposited on Ti sheet as a photoanode to degrade orange II dye. Titanium and SnO2 can promote the development of rutile phase of TiO2 and inhibit the formation of anatase phase of TiO2. Formation of SnO2 crystalline is insignificant even when the calcination temperature increases to 700 °C. Heterogenized interface between SnO2 and TiO2 inhibits growth of TiO2 linkage and leads to the particle-filled surface morphology of SnO2-containing films. The carbonaceous, Ti-O-C bonds and Ti3+ species are likely to account for the photoabsorption and photoelectrocatalytic (PEC) activity under visible light illumination. The electrode with 30% SnO2 exhibits higher photocurrent when compared with those in the region of 0-50%. The 600 °C-calcined SnO2-TiO2 electrode indicates higher activity when compared with those at 400, 500, 700 and 800 °C. PEC degradation of orange II follows the Langmuir-Hinshelwood model and takes place much effectively in a solution of pH 3.0 than those in pH 7.0 and pH 11.0.  相似文献   

11.
Chlorophyll-a (Chl-a) assembled in hydrophobic domain by fatty acid with long alkyl hydrocarbon chain such as myristic acid (Myr), stearic acid (Ste) and cholic acid (Cho) modified onto nanocrystalline TiO2 electrode is prepared and the photovoltaic properties of the nanocrystalline TiO2 film by Chl-a are studied. Incident photon to current efficiency (IPCE) value at 660 nm in photocurrent action spectrum of Chl-a/Ste-TiO2, Chl-a/Myr-TiO2 and Chl-a/Cho-TiO2 electrodes are 5.0%, 4.1% and 4.1%, respectively. Thus, the IPCE is maximum using Chl-a/Ste-TiO2 electrode. From the results of photocurrent responses with light intensity of 100 mW cm−2 irradiation or monochromatic light with 660 nm, generated photocurrent increases using Chl-a/Ste-TiO2 electrode compared with the other Chl-a assembled TiO2 electrodes. These results show that the hydrophobic domain formed by stearic acid with long alkyl hydrocarbon chain is suitable for fixation of Chl-a onto TiO2 film electrodes and photovoltaic performance is improved using Chl-a onto Ste-TiO2 film electrode.  相似文献   

12.
Mn-Ce-OX catalysts loaded on TiO2-carbonaceous materials were prepared by sol-gel method. Selective catalytic reduction of NOX was conducted in a fixed-bed flow-reactor over catalysts coated on aluminum plates. A de-NOX efficiency of more than 90% was obtained over the Mn-Ce-OX/TiO2-carbon nanotubes (CNTs) catalyst between 75 °C and 225 °C under a gas hourly space velocity (GHSV) of ~ 36,000 h−1. This activity improvement is attributed to the increase of the BET surface area, and the occurrence of reaction between adsorbed NOX and NH3. Moreover, the de-NOX efficiency was increased to 99.6% by adding 250 ppm SO2 between 100 °C and 250 °C.  相似文献   

13.
A low temperature (<150 °C) fabrication method for preparation of TiO2 porous films with high efficiency in dye-sensitized solar cells (DSSCs) has been developed. The Ti(IV) tetraisopropoxide (TTIP) was added to the paste of TiO2 nanoparticles to interconnect the TiO2 particles. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) and electron lifetime in the TiO2 film (τe) under different molar ratios of TTIP/TiO2 and also at various TiO2 thicknesses. It was found that the Rct2 decreased as the molar ratio increased from 0.02 to 0.08, however, it increased at a molar ratio of 0.2 due to the reduction in surface area for dye adsorption. In addition, the characteristic frequency peak shifted to lower frequency at a molar ratio of 0.08, indicating the longer electron lifetime. As for the thickness effect, TiO2 film with a thickness around 17 μm achieved the best cell efficiency. EIS study also confirmed that, under illumination, the smallest Rct2 was associated with a TiO2 thickness of 17 μm, with the Rct2 increased as the thickness of TiO2 film increased. In the Bode plots, the characteristic frequency peaks shifted to higher frequency when the thickness of TiO2 increased from 17.2 to 48.2 μm, indicating the electron recombination increases as the thickness of the TiO2 electrode increases.Finally, to make better use of longer wavelength light, 30 wt% of larger TiO2 particle (300 nm) was mixed with P25 TiO2 as light scattering particles. It effectively increased the short-circuit current density and cell conversion efficiency from 7.44 to 8.80 mA cm−2 and 3.75 to 4.20%, respectively.  相似文献   

14.
A new series of anatase TiO2 hollow structures were prepared by a facile hydrothermal process. When the hydrothermal time was increased from 20 min to 72 h, the resulting TiO2 solid spheres gradually transformed into TiO2 hollow spheres with higher surface crystallinity and exposed {001} facets. The as-prepared TiO2-72 h sample exhibited the highest activity comparing to other TiO2-based samples and commercial product Degussa P-25 towards the selective photocatalytic oxidation of toluene to benzaldehyde. Such great photocatalytic performance was mainly attributed to enhanced UV-adsorption and better charge separation efficiency due to higher surface crystallinity of TiO2-72 h.  相似文献   

15.
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm−2 was achieved under oxygen feed at 145 °C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes.  相似文献   

16.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

17.
In this work, treatment of an azo dye solution containing C.I. Basic Red 46 (BR46) by photoelectro-Fenton (PEF) combined with photocatalytic process was studied. Carbon nanotube-polytetrafluoroethylene (CNT-PTFE) electrode was used as cathode. The investigated photocatalyst was TiO2 nanoparticles (Degussa P25) having 80% anatase and 20% rutile, specific surface area (BET) 50 m2/g, and particle size 21 nm immobilized on glass plates. A comparison of electro-Fenton (EF), UV/TiO2, PEF and PEF/TiO2 processes for decolorization of BR46 solution was performed. Results showed that color removal follows the decreasing order: PEF/TiO2 > PEF > EF > UV/TiO2. The influence of the basic operational parameters such as initial pH of the solution, initial dye concentration, the size of anode, applied current, kind of ultraviolet (UV) light and initial Fe3+ concentration on the degradation efficiency of BR46 was studied. The mineralization of the dye was investigated by total organic carbon (TOC) measurements that showed 98.8% mineralization of 20 mg/l dye at 6 h using PEF/TiO2 process. An artificial neural network (ANN) model was developed to predict the decolorization of BR46 solution. The findings indicated that artificial neural network provided reasonable predictive performance (R2 = 0.986).  相似文献   

18.
Mesoporous TiO2 was prepared by simply controlling the hydrolysis of Ti(OBu)4 with the help of acetic acid. The mesoporous TiO2 had a well-crystallized anatase phase and a high surface area of 290 m2 g−1 with a pore size of about 4 nm. The anatase phase and the mesoporous structure were maintained in the VOx/TiO2 catalyst with a monolayer dispersion of V2O5, however, the surface area decreased to 126 m2 g−1. The catalyst was highly active and selective for methanol oxidation, giving about 55% conversion of methanol and 85% selectivity to dimethoxymethane at 423 K.  相似文献   

19.
The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO2 thin-film electrode biased at current density from 5 to 50 mA cm−2 and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L−1, pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L−1 at a pH of 4 and a current density of 30 mA cm−2. The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N = 3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L−1 NaCl and 50 μg L−1 of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of −0.260 min−1, suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections.  相似文献   

20.
Less aggregated titania-silica composite was developed by a versatile and reproducible method using relatively cheap precursors. The final product has more suitable properties than the conventional materials. The composite was synthesized by using sodium silicate, as a silica precursor, and freshly prepared TiOCl2 as a titania source. The final product was obtained after subsequent calcination for 5 h at 300 to 1000 °C. The primary particles of the composite, as examined by SEM technique, are generally less aggregated. The XRD patterns for the calcined samples indicate the presence of TiO2 and there is a significant increase of peak intensity as the calcination temperature increases. EDS and XPS analyses confirmed the formation of pure composite rich in Ti, Si, and O. Nitrogen physisorption studies reveal that the composite is mesoporous and have large BET surface area (~ 375 m2/g). A simple experiment of photoreduction of methyl orange under solar radiation was attempted to demonstrate the reliability and improvement of titania-silica composite in practice. It was found out that its efficiency is high as compared to P-25 TiO2 under solar light. The results demonstrate that composite with desirable properties for various applications can be obtained via the present route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号