首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Electrochemical properties of polymer gel electrolytes based on polymethylmethacrylate (PMMA) were studied by cyclic voltammetry and impedance spectroscopy using new solid-state PMMA-Cd-Cd2+ reference electrode. The suitable potential window of the PC-PMMA system was estimated from -0.2 to + 1.5 V versus Cd-Cd2+. New polymer gels containing ferrocene-ferricinium (Fc-Fc+) couple and other transition metal complexes were prepared by the direct polymerisation of methylmethacrylate (MMA) monomer and the solution of metal complex and supporting electrolyte in anhydrous aprotic solvent—propylene carbonate (PC). The half-wave potentials and apparent diffusion coefficients of used complexes and their dependence on the composition of the system (liquid or gel) were estimated. Time dependent electrochemical measurements showed almost three order decrease of the diffusion coefficients of ferrocene (Fc) and ferricinium (Fc+) cation from 6 × 10−5 to 2 × 10−9 cm2 s−1 during the polymerisation from the liquid to the polymer state. The results show that the PC-PMMA gel electrolyte can be described as a system of embedded solvent in the polymer network of PMMA without present monomer.  相似文献   

2.
Proton-conducting polymer electrolytes based on methacrylates were prepared by direct, radical polymerization of ethyl (EMA), 2-ethoxyethyl (EOEMA), and 2-hydroxyethyl methacrylate (HEMA). Samples with embedded solutions of phosphoric acid in propylene carbonate (PC), γ-butyrolactone (GBL), N,N-dimethylformamide (DMF) and their mixtures were studied using impedance, voltammetrical and thermogravimetric methods. Membranes of long-term stability exhibit ionic conductivity up to 6.7 × 10−5 S cm−1 at 25 °C reached for the sample PEMA-PC-H3PO4 (31:42:27 mol.%). The accessible electrochemical potential window is 2.2-3 V depending on the working electrode material (glassy carbon or platinum). The thermogravimetric analysis shows that the membranes are thermally stable up to 110-130 °C.  相似文献   

3.
2-(2-methyloxyethoxy)ethanol modified poly (cyclotriphosphazene-co-4,4′-sufonyldiphenol) (PZS) nanotubes were synthesized and solid composite polymer electrolytes based on the surface modified polyphosphazene nanotubes added to PEO/LiClO4 model system were prepared. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to investigate the characteristics of the composite polymer electrolytes (CPE). The ionic conductivity, lithium ion transference number and electrochemical stability window can be enhanced after the addition of surface modified PZS nanotubes. The electrochemical investigation shows that the solid composite polymer electrolytes incorporated with PZS nanotubes have higher ionic conductivity and lithium ion transference number than the filler SiO2. Maximum ionic conductivity values of 4.95 × 10−5 S cm−1 at ambient temperature and 1.64 × 10−3 S cm−1 at 80 °C with 10 wt % content of surface modified PZS nanotubes were obtained and the lithium ion transference number was 0.41. The good chemical properties of the solid state composite polymer electrolytes suggested that the inorganic-organic hybrid polyphosphazene nanotubes had a promising use as fillers in solid composite polymer electrolytes and the PEO10-LiClO4-PZS nanotubes solid composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.  相似文献   

4.
FeTAPc-single walled carbon nanotube (SWCNT) dendrimers are employed as glassy carbon electrode modifiers for the electrocatalytic oxidations of amitrole and diuron. The catalytic rate constants were 4.55 × 103 M−1 s−1 and 1.79 × 104 M−1 s−1 for amitrole and diuron, respectively using chronoamperometric studies. The diffusion constants were found to be 1.52 × 10−4 cm2 s−1 and 1.91 × 10−4 cm2 s−1 for diuron and amitrole, respectively. The linear concentration range for both were from 5.0 × 10−5 to 1.0 × 10−4 M and sensitivities of 0.6603 μA/μM and 0.6641 μA/μM for amitrole and diuron, with corresponding limits of detection of 2.15 × 10−7 and 2.6 × 10−7 M using the 3δ notation, respectively.  相似文献   

5.
The interactions of promethazine hydrochloride (PZH) with thiolated single-stranded DNA (HS-ssDNA) and double-stranded DNA (HS-dsDNA) self-assembled on gold electrodes have been studied electrochemically. The binding of PZH with ssDNA shows a mechanism containing an electrostatic interaction, while the mode of PZH interaction with dsDNA contains both electrostatic and intercalative bindings. The redox system belongs to the category of diffusion control approved by cyclic voltammetry (CV). The diffusion coefficients of PZH at the bare, HS-dsDNA and HS-ssDNA modified gold electrodes decrease regularly as 1.34 × 10−3 cm2 s−1, 1.04 × 10−3 cm2 s−1, 7.47 × 10−4 cm2 s−1, respectively. The electron transfer standard rate constant ks of PZH at bare gold, HS-ssDNA and HS-dsDNA modified electrodes are 0.419 s−1, 0.131 s−1, and 0.154 s−1, respectively. The presence of adsorbed dsDNA results in a great increase in the peak currents of PZH in comparison with those obtained at a bare or ssDNA adsorbed gold electrode. The difference between interactions of PZH with HS-ssDNA and HS-dsDNA has been used for hybridization recognition of 14-mer DNA oligonucleotide. The peak current (ipa) of PZH is linearly proportional to the logarithmic concentration of complementary target DNA in the range from 2.0 × 10−9 mol L−1 to 5.0 × 10−7 mol L−1 with the detection limit of 3.8 × 10−10 mol L−1.  相似文献   

6.
New polymer gel electrolytes containing ionic liquids were developed for modern chemical power sources—supercapacitors and lithium-ion batteries. Ternary systems polymer-ionic liquid-aprotic solvent as well as materials containing also lithium salts (LiClO4 or LiPF6) were prepared by direct, thermally initiated polymerisation. Poly(2-ethoxyethyl methacrylate) PEOEMA was combined with various ionic liquids based on 1-methylimidazole. Only 1-butyl-3-methylimidazolium hexafluorophosphate BMIPF6 formed a homogenous and slightly translucent polymer electrolyte, where aprotic solvents—propylene carbonate and ethylene carbonates were used as plasticisers. Materials were studied using the electrochemical and thermogravimetric methods and exhibit high ionic conductivity up to 0.94 mS cm−1 at 25 °C together with high electrochemical stability: the accessible potential window on the glassy carbon was found ca. 4.3 V. Prepared non-volatile materials are long-term and thermally stable up to 150 °C.  相似文献   

7.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

8.
It was recently shown that an abnormally fast transport of CO molecules takes place at the electrode/electrolyte interface of Pt and PtRu electrodes in H2SO4 and HClO4 solutions. In the present paper, this phenomenon is tested for other gases, such as hydrogen and oxygen. The fast transport is also observed at the solid/electrolyte solution interface of other electrode materials and at the glass/electrolyte interface. Several experiments are shown, demonstrating that mass transfer takes place at a velocity, which is more than one order of magnitude higher than expected for usual diffusion conditions.Assuming radial mass transfer at the interface of a Pt disc, the activation energy, Ea = 23 kJ mol−1, was calculated from Arrhenius plots. The same value was measured in H2SO4 and HClO4 as supporting electrolytes. The mass transport parameter, Y, at 298 K was 4.8 × 10−3 cm2 s−1 and 2.9 × 10−3 cm2 s−1 in 0.5 M H2SO4 and 1 M HClO4 respectively.  相似文献   

9.
High-density, surface-mounted ferrocene has been prepared using covalent immobilisation of an alcohol substituted ferrocene derivative to a pre-assembled single-walled carbon nanotubes directly anchored to silicon(1 0 0) surface (SWCNTs-Si). The formation of these ferrocene-modified electrodes (Fc-SWCNTs-Si) has been followed using X-ray photoelectron spectroscopy and atomic force microscopy. Electrochemical results show the surface concentration of ferrocenemethanol molecules is 9.26 × 10−8 mol cm−2, which is about 500-1000 times greater than the experimentally measured coverage of ferrocene directly attached to flat Si(1 0 0) surfaces. The reversible one-electron wave of the ferrocene/ferrocenium couple was observed at 490 mV versus Ag+/Ag and the apparent rate constant of electron transfer, kapp, was 21 s−1. These results suggest these ferrocene-modified electrodes are excellent candidates for molecular memory devices.  相似文献   

10.
Multilayer-type polymer electrolyte membranes composed of a sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) (S-PPBP) layer and a mono[poly(propylene oxide)methacrylate]phosphate ester (PPHP) layer were fabricated by solution-casting procedure (Method 1) and hot-pressing procedure (Method 2) in order to suppress methanol permeability of electrolyte membranes. No delamination was observed by SEM measurements of S-PPBP/PPHP interfaces, indicating that PPHP had good adhesive properties to S-PPBP surfaces. The methanol permeability of S-PPBP/PPHP membranes was lower than that of S-PPBP membranes and decreased with increasing the thickness of PPHP layers. The bilayer membrane with 12 μm PPHP and 40 μm S-PPBP layers showed a methanol permeability of 2.97 × 10−7 cm2 s−1 in 1 mol dm−3 methanol aqueous solution at 25 °C, which was 13% less than that of the S-PPBP membranes. The conductivity of this membrane reached its optimum with values as high as 1.57 × 10−1 S cm−1 at 80 °C and 90%RH.  相似文献   

11.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

12.
Shane A. Seabrook 《Polymer》2005,46(23):9562-9573
The kinetics of acrylamide (AAm) free radical polymerization at low conversion of monomer to polymer in the aqueous phase was investigated at 50 °C using γ-radiolysis relaxation, which is sensitive to radical-loss processes. The values of the termination rate coefficients for AAm ranged from 8×106 to 3×107 M−1 s−1 as the weight fraction of polymer ranged from 0.002 to 0.0035, which is significantly lower than the low-conversion values for monomers such as styrene (2×108 M−1 s−1) and methyl methacrylate (4×107 M−1 s−1) in organic media. These can be quantitatively explained by applying a chain-length-dependent model of free-radical polymerization kinetics [Russell GT, Gilbert RG, Napper DH. Macromolecules 1992;25:2459. [19]] in which termination kinetics are expressed in terms of a diffusion-controlled encounter of radicals which ultimately yields an expression for the chain-length-averaged termination rate coefficient, 〈kt〉. The lower 〈kt〉 for AAm arises due to a combination of the high kp value, promoting rapid formation of slower terminating long chains, and the slow diffusion of short propagating chains, relative to other common monomers. The chain transfer to monomer constant for AAm in water at 50 °C, CM, was estimated using the chain-length-distribution method with correction for band-broadening [Castro JV, van Berkel KY, Russell GT, Gilbert RG. Aust J Chem 2005;58:178. [21]] and found to be 1.2×10−4 (±10%). The diffusion characteristics for AAm were adapted from those obtained for a similar aqueous system (hydroxyethyl methacrylate) together with a 0.5 exponent for the power law dependence on penetrant degree of polymerization at zero weight fraction polymer. This provides an adequate fit to the 〈kt〉 data. This is the first application of the chain-length-dependent model to describe experimental termination rate coefficients for an aqueous system at low conversion to polymer. The result that the experimental termination rate coefficients can be reproduced with an a priori model with physically reasonable parameters supports the physical assumptions underlying that model.  相似文献   

13.
R.W. Smith  J. Booth  A.S. Clough 《Polymer》2004,45(14):4893-4908
Water diffusion into cylindrical biodegradable monolithic depots fabricated from extruded mixtures of poly(dl-lactide) and a peptidic drug, goserelin, containing 20, 30 and 40% drug by weight has been studied using an ion beam analysis technique. A series of depots were immersed in a phosphate buffered saline/heavy water solution at 37 °C for times ranging from 1 h to 7 days. One-dimensional radial profiles showing the diffusion of water into the depots were produced at points along the length of the sample and, for some short immersion times, axial profiles were obtained for the cylinder ends. The changes in weight, radius, drug release and water uptake of the depots with time were also studied. Using the water uptake measurements the one-dimensional radial profiles were normalised. From appropriate one-dimensional profiles at the shorter times Fickian diffusion coefficients were obtained for initial water diffusion. The average radial diffusion coefficients were (1.07±0.22)×10−8 cm2 s−1 for the 20% drug-loaded depots, (1.54±0.27)×10−8 cm2 s−1 for the 30% drug-loaded depots and (2.00±0.83)×10−8 cm2 s−1 for the 40% drug-loaded depots—in the ratio of the drug loadings i.e. 2:3:4, implying the water associated with drug during its uptake into the monoliths. The axial diffusion coefficients were found to be of the same order of magnitude as the radial diffusion coefficients, in accord with this hypothesis. At longer times there is a subsequent non-Fickian increase in the water concentration profile. In the case of depots loaded with 40% by weight of goserelin, the substantial fraction of the hydrophilic drug released at times greater than one day is accompanied by a decrease in radius and a decrease in water concentration near the depot surface.  相似文献   

14.
A new water-soluble inclusion complex of ferrocene (Fc) with β-cyclodextrin polymer (β-CDP) was prepared by a facile strategy and characterized by 1H NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV–vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with β-cyclodextrin (Fc-β-CD), the solubility of ferrocene-β-cyclodextrin polymer (Fc-β-CDP) was greatly enhanced due to the water-soluble β-CDP host. The ratio of β-cyclodextrin (β-CD) unit in β-CDP to Fc was determined as 1:1. At 25 °C, the dissociated constant of Fc-β-CDP was measured as 3.65 mM by UV–vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-β-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as 3.52 × 10−7 cm2 s−1 and 3.93 × 10−7 cm2 s−1. The resulting value of standard rate constant was measured as 1.95 × 10−3 cm s−1. The diffusion activation energy was calculated as 21.8 kJ mol−1.  相似文献   

15.
Samples and fractions of a membrane-forming polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), were studied by methods of molecular hydrodynamics (velocity sedimentation, translational isothermal diffusion and viscometry) in cyclohexane in the molecular mass range 60<M×10−3 g mol−1<430. The following molecular-mass dependencies of the hydrodynamic characteristics (intrinsic viscosity [η] (cm3 g−1), sedimentation coefficient s0(s) and translational diffusion coefficient D0 (cm2 s−1)) were established: [η]=0.198 M0.50±0.06; s0=8.66×10−16M0.50±0.04; D0=9.30×10−5M−0.50±0.04. On the basis of the hydrodynamics data the equilibrium rigidity and hydrodynamic diameter of PTMSP chains were evaluated. The equilibrium properties of the different disubstituted polyacetylenes molecules are compared on the base of the normalised scaling plots.  相似文献   

16.
In this study, a strategy for synthesizing lithium methacrylate (LiMA)-based self-doped gel polymer electrolytes was described and the electrochemical properties were investigated by impedance spectroscopy and linear sweep voltammetry. LiMA was found to dissolve in ethylene carbonate (EC)/diethyl carbonate (DEC) (3/7, v/v) solvent after complexing with boron trifluoride (BF3). This was achieved by lowering the ionic interactions between the methacrylic anion and lithium cation. As a result, gel polymer electrolytes consisting of BF3-LiMA complexes and poly(ethylene glycol) diacrylate were successfully synthesized by radical polymerization in an EC/DEC liquid electrolyte. The FT-IR and AC impedance measurements revealed that the incorporation of BF3 into the gel polymer electrolytes increases the solubility of LiMA and the ionic conductivity by enhancing the ion disassociations. Despite the self-doped nature of the LiMA salt, an ionic conductivity value of 3.0 × 10−5 S cm−1 was achieved at 25 °C in the gel polymer electrolyte with 49 wt% of polymer content. Furthermore, linear sweep voltammetry measurements showed that the electrochemical stability of the gel polymer electrolyte was around 5.0 V at 25 °C.  相似文献   

17.
Electrogenerated polymers based on copper salen-type complexes were characterised electrochemically and by in situ UV-vis and ex situ EPR spectroscopy. The films, poly[Cu(salen)] and poly[Cu(saltMe)], exhibit reversible oxidative electrochemical behaviour in a wide potential range (0.0-1.5 V). Different regimes for charge transport behaviour are accessed by manipulation of film thickness and experimental time scale: thin films (surface concentration, Γ < ca. 80 nmol cm−2) show thin-layer/surface behaviour in the scan rate range used (0.020-2.0 V s−1), whereas thicker polymers (Γ > ca. 90 nmol cm−2) exhibit a changeover from thin-layer to diffusion control regime at a critical scan rate that depends on polymer and film thickness: 0.15-0.20 V s−1 for poly[Cu(salen)], 90 < Γ < 130 nmol cm−2 and 0.20-0.30 V s−1 for poly[Cu(saltMe)], 170 < Γ < 230 nmol cm−2.UV-vis and EPR spectroscopies have allowed the characterisation of electronic states in the reduced and oxidised forms. The role of the copper atom during film oxidation was probed by combining UV-vis data with EPR on copolymers of the copper and nickel complexes. Data from both techniques are consistent and indicate that polymerisation and redox switching are associated with ligand-based processes. EPR of Ni-doped Cu polymers provided evidence for the non-involvement of the metal centre in polymer oxidation; like the analogous nickel polymers, copper polymers behave like delocalised π-system (‘conducting’) rather than discrete site (‘redox’) polymers.  相似文献   

18.
Daiki Wakizaka 《Polymer》2004,45(25):8561-8565
Multilayered ultrathin films of a conductive polymer, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by layer-by-layer deposition technique. These films were characterized by absorption spectroscopy, atomic force microscopy, cyclic voltammetry and potential step chronoamperometry. The PEDOT/PSS films were layered up with a bilayer thickness of 5 nm and the surface roughness of the films was improved after the ultrasonicated pretreatment of a PEDOT/PSS aqueous dispersion prior to the deposition. The ultrathin films thus obtained kept excellent diffusion constant of hole carriers, 5×10−10 cm2 s−1, as high as that of spin-cast films of PEDOT/PSS, indicating that the conducting polymer films are fabricated with nanometer-scale precision and act as a junction layer between the electrode and electrochemically active organic materials.  相似文献   

19.
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 × 10−3 S cm−1 has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758 V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery.  相似文献   

20.
The electrochemical and diffusion behaviour of different redox probes in different ionic liquids is studied at gold nanoelectrode ensembles (NEEs) in comparison with millimetre sized gold (Au-macro) and glassy carbon (GC) disk electrodes. The redox probes are neutral ferrocene (Fc), the ferrocenylmethyltrimetylammonium cation (FA+) and the ferrocenylmonocarboxylate anion (FcCOO). The ILs are the dicyanamide, [N(CN)2] or bis(trifluoromethylsulfonyl)amide), [N(Tf)2] salts of the following cations: 1-butyl-3-methylimidazolium, [BMIm], 1-butyl-3-methylpyrrolidonium, [BMPy], or tris(n-hexyl)tetradecylphosphonium [P14,666]. These ILs are characterized by different viscosities, ranging from 32 to 277 cP. The cyclic voltammetric behaviour of the redox probes is reversible and diffusion controlled at GC electrodes. Diffusion coefficients (D) calculated by the Randles-Sevcik equation scales inversely with the IL viscosity, ranging from 2 × 10−8 to 3 × 10−7 cm2 s−1. Ionic solutes, namely FA+ and FcCOO, present slightly lower D values than neutral Fc. At the Au-macro the electrochemical behaviour of the redox probes is diffusion controlled in the ILs containing the [N(Tf)2] anion, while it involves relevant adsorption processes in the [N(CN)2] containing electrolyte. For this reason the diffusion at gold NEEs is studied only in the former ILs.The CVs of the redox probes at the NEEs are peak shaped at low scan rate (v), while they are sigmoidally shaped at high v, but with some shift between forward and backward patterns. This is indicative of the occurrence of a total overlap (TO) diffusion condition when v is low which becomes a mixed diffusion layers (MDL) regime, with only a partial overlapping of individual diffusion layers, at high v values. In the most viscous IL, namely [P14,666] [N(Tf)2], at v higher than 0.8 V s−1, a plateau current independent on the scan rate is achieved, indicating the tendency to reach the pure radial regime in this IL. The v values at which the transition between TO and MDL is observed scales directly with D and inversely with the IL viscosity. This behaviour is interpreted on the basis of the dependence of individual diffusion layers at each nanoelectrode on redox probe/IL interaction which fits with existing theoretical models very recently developed for nanoelectrode arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号