首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have incorporated polymer additives such as poly(ethylene glycol) dimethyl ether (PEGDME) and tetra(ethylene glycol) dimethyl ether (TEGDME) into N-methyl-N-butylpyrrolidinium bis(trifluoromethane sulfonyl)imide (PYR14TFSI)-LiTFSI mixtures. The resulting PYR14TFSI + LiTFSI + polymer additive ternary electrolyte exhibited relatively high ionic conductivity as well as remarkably low viscosity over a wide temperature range compared to the PYR14TFSI + LiTFSI binary electrolytes. The charge/discharge cyclability of Li/LiFePO4 cells containing the ternary electrolytes was investigated. We found that Li/PYR14TFSI + LiTFSI + PEGDME (or TEGDME)/LiFePO4 cells containing the two different polymer additives showed very similar discharge capacity behavior, with very stable cyclability at room temperature (RT). Li/PYR14TFSI + LiTFSI + TEGDME/LiFePO4 cells can deliver about 127 mAh/g of LiFePO4 (74.7% of theoretical capacity) at 0.054 mA/cm2 (0.2C rate) at RT and about 108 mAh/g of LiFePO4 (63.4% of theoretical capacity) at 0.023 mA/cm2 (0.1C rate) at −1 °C for the first discharge. The cell exhibited a capacity fading rate of approximately 0.09-0.15% per cycle over 50 cycles at RT. Consequently, the PYR14TFSI + LiTFSI + polymer additive ternary mixture is a promising electrolyte for cells using lithium metal electrodes such as the Li/LiFePO4 cell reported here. These cells showed the capability of operating over a significant temperature range (∼0-∼30 °C).  相似文献   

2.
Cathode material LiFePO4 with an excellent rate capability has been successfully prepared by a simple solid state reaction method using LiCH3COO·2H2O, FeC2O4·2H2O and (NH4)2HPO4 as the starting materials. We have investigated the effects of the sintering temperature and mixing time of the starting materials on the physical properties and electrochemical performance of LiFePO4. It was found that the rate capability of LiFePO4 is mainly controlled by its specific surface area and it is an effective way to improve the rate capability of the sample by increasing its specific surface area. In the present study, our prepared LiFePO4 with a high specific surface area of 24.1 m2 g−1 has an excellent rate capability and can deliver 115 mAh g−1 of reversible capacity even at the 5 C rate. Moreover, we have prepared lithium ion batteries based on LiFePO4 as the cathode material and MCMB as the anode material, which showed an excellent cycling performance.  相似文献   

3.
LiFePO4/C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe2O3, NH4H2PO4, Li2C2O4 and lithium polyacrylate (PAALi). The sintering temperature of LiFePO4/C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO4/C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO4/C composite with the particle size of ∼200 nm shows better discharge capacity (156.4 mAh g−1) than bare LiFePO4 (52.3 mAh g−1) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO4/C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g−1 and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO4/C composite.  相似文献   

4.
Monoclinic phase FePO4·2H2O nanoplates are synthesized very easily in a waterbath and are lithiated to LiFePO4/C nanoparticles by a simple rheological phase method. The thickness of the nanoplates can be tuned simply by changing the concentrations of the reactants. The LiFePO4/C nanoparticles lithiated from the thin FePO4·2H2O nanoplates, with the sizes about 50 nm and the carbon coating layer at the surface 1–2 nm, show excellent high-rate performance and long-term cyclability as the cathode for lithium ion batteries, delivering discharge capacities of more than 150, 120, 110, 100, and 75 mAh g−1 at rates of 5 C, 10 C, 15 C, 20 C and 30 C, respectively.  相似文献   

5.
A simple chemical oxidative polymerization of pyrrole (Py) directly onto the surface of LiFePO4 particles was applied to the synthesis of polypyrrole-LiFePO4 (PPy-LiFePO4) powder. The LiFePO4 sample without carbon coating was synthesized by a solvothermal method. The polyethylene glycol (PEG) was used as additive during Py polymerization for increasing the PPy-LiFePO4 conductivity. Properties of resulting LiFePO4, PPy-LiFePO4 and PPy/PEG-LiFePO4 samples were characterized by XRD, SEM, TGA and galvanostatic charge-discharge measurements. These methods confirmed the presence of polypyrrole on LiFePO4 particles and its homogeneous distribution in the resulting powder material. The PPy/PEG-LiFePO4 composites show higher discharge capacity than pure LiFePO4, as PPy/PEG network improves the electron conductivity. It presents specific discharge capacity of 153 mAh/g at C/5 rate.  相似文献   

6.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

7.
The effect of CeO2 coating on LiFePO4/C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO2 particles distribute on the surface of LiFePO4 without destroying the crystal structure of the bulk material. The CeO2-coated LiFePO4/C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At −20 °C, the CeO2-coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

8.
Spray drying and carbothermal method was employed to investigate reaction mechanism and electrochemical performance of LiFePO4/C cathode by using different carbon sources. Micro-structural variations of LiFePO4/C precursors using different carbon sources were studied by Thermo-gravimetric (TG)/Differential Thermal Analysis (DTA). The LiFePO4/C samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) absorption spectroscopy. The results indicated that the crystallization temperature of LiFePO4 was 453 °C, while the transform temperature was 539 °C from Li3Fe2(PO4)3 to LiFePO4. At 840 °C, LiFePO4/C sample with an excess of impurity phase Fe2P gave much poorer electrochemical performance. The severe decomposition of LiFePO4/C happened at 938 °C and generated impurity phases Li4P2O7 and Fe2P. The clear discharge platform of Fe2P emerged at around 2.2 V.  相似文献   

9.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

10.
The synthetic rutile and metal-doped LiFePO4 are prepared from the high-titanium residue and iron-rich lixivium, which are obtained from the ilmenite by a mechanical activation and leaching process. ICP results show that the rutile contains 92.01% TiO2, 1.59% Fe2O3, 0.034% MnO2 and 0.60% (MgO + CaO), which meet the requirement of the titanium dioxide chlorination process. The results also reveal that small amounts of Al3+, Ca2+ and Ti4+ precipitate in the FePO4·xH2O precursor. XRD and Rietveld-refine results show that the metal-doped LiFePO4 is single olivine-type phase and well crystallized, and Ti4+ occupy M1 site, Ca2+ occupy M2 site and Al3+ occupy both sites, which indicates the formation of cation-deficient solid solution. The sample exhibits a capacity of 123 mAh g1 at 5C rate, and retains 94.3% of the capacity after 100 cycles.  相似文献   

11.
G.Q. Liu  Qilu  W. Li 《Electrochimica acta》2005,50(9):1965-1968
Spinel compound LiNi0.5Mn1.5O4 was synthesized by a chemical wet method. Mn(NO3)2, Ni(NO3)2·6H2O, NH4HCO3 and LiOH·H2O were used as the starting materials. At first, Mn(NO3)2 and Ni(NO3)2·6H2O reacted with NH4HCO3 to produce a precursor, then the precursor reacted with LiOH·H2O to synthesize product LiNi0.5Mn1.5O4. The product showed a single spinel phase under appropriate calcination conditions, and exhibited a high voltage plateau at about 4.6-4.8 V in the charge/discharge process. The LiNi0.5Mn1.5O4 had a discharge specific capacity of 118 mAh/g at about 4.6 V and 126 mAh/g in total in the first cycle at a discharge current density of 2 mA/cm2. After 50 cycles, the total discharge capacity was above 118 mAh/g.  相似文献   

12.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

13.
Chemical lithiation of amorphous FePO4 with LiI in acetonitrile is performed to form amorphous LiFePO4. The amorphous FePO4·2H2O precursor is synthesized by co-precipitation method from equimolar aqueous solutions of FeSO4·7H2O and NH4H2PO4, using H2O2 (hydrogen peroxide) as the oxidizing agent. The nanocrystalline LiFePO4/C is obtained by annealing the amorphous LiFePO4 and in situ carbon coating with sucrose in a reducing atmosphere. The particle size of FePO4·2H2O precursor decreases with increasing reaction temperature. The final LiFePO4/C products completely maintain the shape and size of the precursor even after annealing at 700 °C for 2 h. The excellent electrochemical properties of these nanocrystalline LiFePO4/C composites suggest that to decrease the particle size of LiFePO4 is very effective in enhancing the rate capability and cycle performance. The specific discharge capacities of LiFePO4/C obtained from the FePO4·2H2O precursor synthesized at 75 °C are 151.8 and 133.5 mAh g?1 at 0.1 and 1 C rates, with a low capacity fading of about 0.075 % per cycle over 50 cycles at 0.5 C rate.  相似文献   

14.
LiFePO4/carbon composite was synthesized at 600 °C for 4 h in an Ar atmosphere by a stearic acid assisted rheological phase method using amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/carbon composite has good crystallinity, ultrafine and well-dispersed particles of 60–150 nm size and in situ carbon coated on the surface of LiFePO4 crystallites. The synthesized LiFePO4/carbon composite shows a high discharge capacity of 160 mAh g−1 and 155 mAh g−1 at rates of 0.5 C and 1 C, respectively. Even at a high current density of 30 C, the material still presents a discharge capacity of 93 mAh g−1 and exhibits an excellent cycling performance.  相似文献   

15.
A nano-LiFePO4/C composite has been directly synthesized from micrometer-sized Li2CO3, NH4H2PO4, and FeC2O4·2H2O by the lauric acid-assisted solid-state reaction method. The SEM and TEM observations demonstrate that the synthesized nano-LiFePO4/C composite has well-dispersed particles with a size of about 100–200 nm and an in situ carbon layer with thickness of about 2 nm. The prepared nano-LiFePO4/C composite has superior rate capability, delivering a discharge capacity of 141.2 mAh g−1 at 5 °C, 130.9 mAh g−1 at 10 C, 121.7 mAh g−1 at 20 °C, and 112.4 mAh g−1 at 30 °C. At −20 °C, this cathode material still exhibits good rate capability with a discharge capacity of 91.9 mAh g−1 at 1 °C. The nano-LiFePO4/C composite also shows excellent cycling ability with good capacity retention, up to 100 cycles at a high current density of 30 °C. Furthermore, the effect of lauric acid in the preparation of nano-LiFePO4/C composite was investigated by comparing it with that of citric acid. The SEM images reveal that the morphology of the LiFePO4/C composite transformed from the porous structure to fine particles as the molar ratio of lauric acid/citric acid increased.  相似文献   

16.
LiFePO4/C was synthesized by the method of solid-liquid reaction milling, using FeCl3·6H2O, Li2CO3 and (NH4)2HPO4 and glucose, which was used as reductant (carbon source). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), TG-DTA analysis, infrared absorption carbon-sulfur analysis and electrochemical performance test. The sample synthesized at 680 °C for 8 h showed, at initial discharge, a capacity of 155.8, 153.2, 148.5, 132.7 mAh g− 1 at 0.2 °C, 0.5 °C, 1 °C and 3 °C rate respectively. The sample also showed an excellent capacity retention as there was no significant capacity fade after 10 cycles.  相似文献   

17.
A LiFePO4/C composite was successfully prepared by a polymer-pyrolysis–reduction method, using FePO4·2H2O and lithium polyacrylate (PAALi) as raw materials. The structure of the LiFePO4/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursor and LiFePO4/C powders was observed using scanning electron microscopy (SEM), and the in situ coating of carbon on the particles was observed by transmission electron microscopy (TEM). Furthermore, the electrochemical properties were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the sample synthesized at 700 °C had the best electrochemical performance, exhibiting initial discharge capacities of 157, 139 and 109 mAh g−1 at rates of 0.1, 1 and 5 C, respectively. Moreover, the sample presented excellent capacity retention as there was no significant capacity fade after 50 cycles.  相似文献   

18.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

19.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

20.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号