首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have incorporated polymer additives such as poly(ethylene glycol) dimethyl ether (PEGDME) and tetra(ethylene glycol) dimethyl ether (TEGDME) into N-methyl-N-butylpyrrolidinium bis(trifluoromethane sulfonyl)imide (PYR14TFSI)-LiTFSI mixtures. The resulting PYR14TFSI + LiTFSI + polymer additive ternary electrolyte exhibited relatively high ionic conductivity as well as remarkably low viscosity over a wide temperature range compared to the PYR14TFSI + LiTFSI binary electrolytes. The charge/discharge cyclability of Li/LiFePO4 cells containing the ternary electrolytes was investigated. We found that Li/PYR14TFSI + LiTFSI + PEGDME (or TEGDME)/LiFePO4 cells containing the two different polymer additives showed very similar discharge capacity behavior, with very stable cyclability at room temperature (RT). Li/PYR14TFSI + LiTFSI + TEGDME/LiFePO4 cells can deliver about 127 mAh/g of LiFePO4 (74.7% of theoretical capacity) at 0.054 mA/cm2 (0.2C rate) at RT and about 108 mAh/g of LiFePO4 (63.4% of theoretical capacity) at 0.023 mA/cm2 (0.1C rate) at −1 °C for the first discharge. The cell exhibited a capacity fading rate of approximately 0.09-0.15% per cycle over 50 cycles at RT. Consequently, the PYR14TFSI + LiTFSI + polymer additive ternary mixture is a promising electrolyte for cells using lithium metal electrodes such as the Li/LiFePO4 cell reported here. These cells showed the capability of operating over a significant temperature range (∼0-∼30 °C).  相似文献   

2.
LiMn2O4 was examined as a cathode material for lithium-ion batteries, working together with a room temperature ionic liquid electrolyte, obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MePrPipNTf2), with the formation of a liquid LiNTf2-MePrPipNTf2 system. The Li/LiMn2O4 cell was tested by galvanostatic charging/discharging and by impedance spectroscopy. The LiMn2O4 cathode showed good cyclability and Coulombic efficiency in the presence of 10 wt.% of vinylene carbonate (VC) as an additive to the ionic liquid. The flash point of the LiNTf2-MePrPipNTf2-VC(10%) electrolyte was estimated to be above 300 °C.  相似文献   

3.
The effect of the alkyl side group on the synthesis and the electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1ATFSI) ionic liquids (ILs) is reported. The investigation was focused on the PYR1ATFSI ionic liquid family because of the interesting electrochemical properties of the members with propyl and butyl side chains. Side alkyl groups (A = CnH2n+1 with n ranging from 1 to 10) of different length and structure were used for the synthesis of PYR1ATFSI materials. NMR and DSC have shown that the ionic liquids were correctly synthesized with the exception of the compounds with tertiary side chains. Most of the materials exhibited a conductivity higher than 10−3 S cm−1 already at 12 °C. In the molten state a moderate conductivity decrease was observed with increasing the length and the branching of the side chain (C2H2n+1) group according with the change of viscosity of the ionic liquids. Most of the PYR1ATFSI samples exhibited an electrochemical stability window exceeding 5 V.  相似文献   

4.
Hu Cheng 《Electrochimica acta》2007,52(19):5789-5794
New gel polymer electrolytes containing 1-butyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide (BMPyTFSI) ionic liquid are prepared by solution casting method. Thermal and electrochemical properties have been determined for these gel polymer electrolytes. The addition of BMPyTFSI to the P(EO)20LiTFSI electrolyte results in an increase of the ionic conductivity, and at high BMPyTFSI concentration (BMPy+/Li+ = 1.0), the ionic conductivity reaches the value of 6.9 × 10−4 S/cm at 40 °C. The lithium ion transference numbers obtained from polarization measurements at 40 °C were found to decrease as the amount of BMPyTFSI increased. However, the lithium ionic conductivity increased with the content of BMPyTFSI. The electrochemical stability and interfacial stability for these gel polymer electrolytes were significantly improved due to the incorporation of BMPyTFSI.  相似文献   

5.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

6.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

7.
Amorphous hydrated iron (III) phosphate has been synthesized by a coordinate precipitation method from equimolecular Fe(NO3)3 and (NH4)2HPO4 solutions at an elevated temperature. Hydrated iron (III) phosphate samples and the corresponding LiFePO4/C products were characterized by XRD and SEM. The electrochemical behavior was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The LiFePO4/C fabricated from as-synthesized FePO4 delivered discharge capacities of 162.5, 147.3, 133.0, 114.7, 97.2, 91.3 and 88.5 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C and 4C with satisfactory capacity retention, respectively.  相似文献   

8.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

9.
The electrochemical reduction of palladium halide complexes such as PdBr42− and PdCl42− was investigated in a hydrophobic room-temperature ionic liquid (RTIL), 1-n-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI). The irreversible electrode reaction between Pd(II) and Pd(0) was observed in BMPTFSI containing PdBr42− or PdCl42− by cyclic voltammetry. The diffusion coefficient of PdBr42− was estimated to be (1-2) × 10−7 cm2 s−1 by choronopotentiometry and chronoamperometry. The deposition of crystalline Pd metal was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. It was suggested by the chronoamperometric measurements on PdBr42− in BMPTFSI that the initial stage of the electrodeposition of Pd on the polycrystalline Pt electrode surface involves three-dimensional progressive nucleation under diffusion control. The reduction potential of PdCl42− was more negative than that of PdBr42−, reflecting the difference in the donor property between chloride and bromide.  相似文献   

10.
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature. The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a “jelly-like” consistency. The composite ionic conductivity measured over the range −30 °C to 60 °C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 °C up to 50 wt% PMMA). While addition of LiTFSI to IL does not influence the glass Tg and Tm melting temperature significantly, dispersion of PMMA (especially at higher contents) resulted in increase in Tg and disappearance of Tm. In general, the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport. However, for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other. Because of the beneficial physico-chemical properties and interesting ion transport mechanism, we envisage the present soft matter electrolytes to be promising for application in electrochromic devices.  相似文献   

11.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

12.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

13.
LiFePO4/C was synthesized by the method of solid-liquid reaction milling, using FeCl3·6H2O, Li2CO3 and (NH4)2HPO4 and glucose, which was used as reductant (carbon source). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), TG-DTA analysis, infrared absorption carbon-sulfur analysis and electrochemical performance test. The sample synthesized at 680 °C for 8 h showed, at initial discharge, a capacity of 155.8, 153.2, 148.5, 132.7 mAh g− 1 at 0.2 °C, 0.5 °C, 1 °C and 3 °C rate respectively. The sample also showed an excellent capacity retention as there was no significant capacity fade after 10 cycles.  相似文献   

14.
The capacity loss rate of LiFePO4 in aqueous electrolyte was found to be much faster than it in organic electrolyte. The cycling stability in aqueous electrolyte with various dissolved oxygen content and pH value was extensively studied by cyclic voltammetry. It was found that both high OH and dissolve O2 content can accelerate the cycling fading of LiFePO4. It has been proved that the capacity fading of LiFePO4 is due to not only chemical instability but also electrochemical instability. Mössbauer spectroscopy demonstrated that the Fe(III)-containing species was formed in the active materials arisen from the irreversible side reaction. The carbon-coated LiFePO4 prepared by chemical vapor decomposition method shows significantly improvement in cycling stability. The carbon coating technology provides an effective approach to enhance cycling performance in aqueous electrolyte as well as proof of proposed fading mechanism.  相似文献   

15.
In this work, we examined the electrochemical behaviour of lithium ion batteries containing lithium iron phosphate as the positive electrode and systems based on Li-Al or Li-Ti-O as the negative electrode. These two systems differ in their potential versus the redox couple Li+/Li and in their morphological changes upon lithium insertion/deinsertion. Under relatively slow charge/discharge regimes, the lithium-aluminium alloys were found to deliver energies as high as 438 Wh kg−1 but could withstand only a few cycles before crumbling, which precludes their use as negative electrodes. Negative electrodes consisting solely of aluminium performed even worse. However, an electrode made from a material with zero-strain associated to lithium introduction/removal such as a lithium titanate spinel exhibited good performance that was slightly dependent on the current rate used. The Li4Ti5O12/LiFePO4 cell provided capacities as high as 150 mAh g−1 under C-rate in the 100th cycle.  相似文献   

16.
Olivine structured LiFePO4/C cathode was synthesized via a freeze-drying route and followed by microwave heating with two kinds of carbon sources: PEG-4000 (organic) and Super p (inorganic). XRD patterns indicate that the as-prepared sample has an olivine structure and carbon modification does not affect the structure of the sample. Image of SEM shows a uniform and optimized particles size, which greatly improves the electrochemical properties. TEM result reveals the amorphous carbon around the surface of the particles. At a low rate of 0.1 C, the LiFePO4/C sample presents a high discharge capacity of 157.8 mAh g−1 which is near the theoretical capacity (170 mAh g−1), and it still attains to 149.1 mAh g−1 after 200 cycles. It also exhibits an excellent rate capacity with high discharge capacities of 143.2 mAh g−1, 137.5 mAh g−1, 123.7 mAh g−1 and 101.6 mAh g−1 at 0.5 C, 1.0 C, 2.0 C and 5.0 C, respectively. EIS results indicate that the charge transfer resistance of LiFePO4 decreases greatly after carbon coating.  相似文献   

17.
The solubilities of CO2 and the liquid densities in a Brønsted acid-base ionic liquid, [DMFH][Tf2N], composed of N,N-dimethylformamide (DMF) and bis(trifluoromethanesulfonyl)amide (HTf2N) have been investigated at high pressures and at different temperatures. The results were compared with those in DMF and a typical 1-butyl-3-methylimidazolium analogue with the same anion, [BMIM][Tf2N]. The mole fraction scaled solubilities of CO2 in the three liquids showed a slight increase in the following order, DMF < [DMFH][Tf2N] < [BMIM][Tf2N], whereas more remarkable difference was observed in the volume scaled concentrations of CO2, [BMIM][Tf2N] < [DMFH][Tf2N] « DMF, mainly due to the bulkiness of liquid entities.  相似文献   

18.
Although research in the field of ionic liquids for electrochemical applications has led to a deeper knowledge in their electrochemical properties, doubts in the interpretation of the experimental results are still encountered in the literature due to the poor control of the experimental conditions and/or to the limited number of experiments conducted. In this work, the effect of water and oxygen traces on the cathodic stability window of hydrophobic, air-stable ionic liquids composed of N-alkyl-N-methylpyrrolidinium (PYR1A+) cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion, is reported. The extensive investigation performed by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicates that the TFSI anion is cathodically stable if the ionic liquid is pure and dry. The N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids investigated showed featureless cathodic linear sweep voltammetry curves before the massive cation decomposition took place at very low potentials.  相似文献   

19.
Some polyanionic compounds, e.g. TiP2O7 and LiTi2(PO4)3 with 3D framework structure were proposed to be used as anodes of lithium ion battery with aqueous electrolyte. The cyclic voltammetry properties TiP2O7 and LiTi2(PO4)3 suggested that Li-ion de/intercalation reaction can occur without serious hydrogen evolution in 5 M LiNO3 aqueous solution. The TiP2O7 and LiTi2(PO4)3 give capacities of about 80 mAh/g between potentials of −0.50 V and 0 V (versus SHE) and 90 mAh/g between −0.65 V and −0.10 V (versus SHE), respectively. A test cell consisting of TiP2O7/5 M LiNO3/LiMn2O4 delivers approximately 42 mAh/g (weight of cathode and anode) at average voltage of 1.40 V, and LiTi2(PO4)3/5 M LiNO3/LiMn2O4 delivers approximately 45 mAh/g at average voltage of 1.50 V. Both as-assembled cells suffered from short cycle life. The capacity fading may be related to deterioration of anode material.  相似文献   

20.
A simple high-energy ball milling combined with spray-drying method has been developed to synthesize LiFePO4/carbon composite. This material delivers an improved tap density of 1.3 g/cm3 and a high electronic conductivity of 10−2 to 10−3 S/cm. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. The discharge capacities are as high as 109 mAh/g at the current density of 1100 mA/g (about 6.5C rate) and 94 mAh/g at the current density of 1900 mA/g (about 11C rate). At the high current density of 1700 mA/g (10C rate), it exhibits a long-term cyclability, retaining over 92% of its original discharge capacity beyond 2400 cycles. Therefore, the as-prepared LiFePO4/carbon composite cathode material is capable of such large-scale applications as hybrid and plug-in hybrid electric vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号