首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-coated LiFePO4 composites were synthesized by a new method of high-temperature high-energy ball milling (HTHEBM). Fe2O3 and LiH2PO4 were used as raw materials. Glucose, sucrose, citric acid and active carbon were used as reducing agents and carbon sources, respectively. In this method, high-energy ball milling and carbon coating worked together and, therefore, fine and homogeneous LiFePO4/C particles with excellent properties were obtained in a relatively short synthesis time of 9 h. Moreover, the synthesis process could be completely finished at a relatively lower temperature of 600 °C for high-energy ball milling transforming mechanical energy into thermal energy. The results of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical performance tests indicated that carbon source had an important influence on the properties of LiFePO4/C composites synthesized by the HTHEBM method. It was proved that the LiFePO4 composites coated with glucose had the best properties with 1 μm geometric mean diameter and 150.3 mA h g−1 initial discharge capacity at a current rate of 0.1 C. After the 20th cycle test, the reversible capacity was 148 mA h g−1 at 0.1 C, showing a retention ratio to the initial capacity of 98.5%.  相似文献   

2.
LiFePO4/C was synthesized by the method of solid-liquid reaction milling, using FeCl3·6H2O, Li2CO3 and (NH4)2HPO4 and glucose, which was used as reductant (carbon source). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), TG-DTA analysis, infrared absorption carbon-sulfur analysis and electrochemical performance test. The sample synthesized at 680 °C for 8 h showed, at initial discharge, a capacity of 155.8, 153.2, 148.5, 132.7 mAh g− 1 at 0.2 °C, 0.5 °C, 1 °C and 3 °C rate respectively. The sample also showed an excellent capacity retention as there was no significant capacity fade after 10 cycles.  相似文献   

3.
LiFePO4 can be used as a positive electrode material for lithium-ion batteries by making composite with electrical conductive carbonaceous materials. In this study, LiFePO4/C (carbon) composite was prepared by a soft chemistry route, in which sucrose was used as a carbon source of a low price. We tried to optimize a Li/(LiFePO4/C) cell performance through changing synthetic conditions and discussed the factors affecting the electrochemical performances of the cell, such as the amount of the carbon source, synthetic temperature, gas flow rate of pyrolysis and the formation of secondary phases. It was found that the connection of the residual carbon and Fe2P to LiFePO4 particles and the amount of these two phases were important factors. In our experimental conditions, LiFePO4/C including 9.72 wt.% of residual carbon, prepared at 800 °C for 12 h showed the highest reversible capacity and the best C rate performance among the synthesized materials; 130 mAh g−1 at 10C rate and 50 °C.  相似文献   

4.
LiFePO4/carbon composite cathode material was prepared using polyvinyl alcohol (PVA) as carbon source by pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM and TGA. Their electrochemical performance was investigated in terms of charge–discharge cycling behavior. It consists of a single LiFePO4 phase and amorphous carbon. The special micro-morphology via the process is favorable for electrochemical properties. The discharge capacity of the LiFePO4/C composite was 145 mAh/g, closer to the theoretical specific capacity of 170 mAh/g at 0.1 C low current density. At 3 C modest current density, the specific capacity was about 80 mAh/g, which can satisfy for transportation applications if having a more planar discharge flat.  相似文献   

5.
Youyong Liu 《Electrochimica acta》2010,55(16):4694-19237
A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO4/C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO4. Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO4/C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO4/C presents enhanced discharge capacities (159, 147 and 135 mAh g−1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.  相似文献   

6.
The effect of CeO2 coating on LiFePO4/C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO2 particles distribute on the surface of LiFePO4 without destroying the crystal structure of the bulk material. The CeO2-coated LiFePO4/C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At −20 °C, the CeO2-coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

7.
Spray drying and carbothermal method was employed to investigate reaction mechanism and electrochemical performance of LiFePO4/C cathode by using different carbon sources. Micro-structural variations of LiFePO4/C precursors using different carbon sources were studied by Thermo-gravimetric (TG)/Differential Thermal Analysis (DTA). The LiFePO4/C samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) absorption spectroscopy. The results indicated that the crystallization temperature of LiFePO4 was 453 °C, while the transform temperature was 539 °C from Li3Fe2(PO4)3 to LiFePO4. At 840 °C, LiFePO4/C sample with an excess of impurity phase Fe2P gave much poorer electrochemical performance. The severe decomposition of LiFePO4/C happened at 938 °C and generated impurity phases Li4P2O7 and Fe2P. The clear discharge platform of Fe2P emerged at around 2.2 V.  相似文献   

8.
Ke Wang 《Electrochimica acta》2009,54(10):2861-2907
LiFePO4/C composite was synthesized by mechanical activation using sucrose as carbon source. High-energy ball milling facilitated phase formation during thermal treatment. TG-DSC and TPR experiments demonstrated sucrose was converted to CHx intermediate before completely decomposed to carbon. Ball milling time, calcination temperature and dwelling time all had significant impact on the discharge capacity and rate performance of the resulted power. The optimal process parameters are high-energy ball milling for 2-4 h followed by thermal treatment at 700 °C for 20 h. The product showed a capacity of 174 mAh/g at 0.1C rate and around 117 mAh/g at 20C rate with the capacity fade less than 10% after 50 cycles. Too low calcination temperature or insufficient calcination time, however, could result in the residual of CHx in the electrode and led to a decrease of electrode performance.  相似文献   

9.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

10.
Both Ni doping and carbon coating are adopted to synthesize a nano-sized LiFePO4 cathode material through a simple solid-state reaction. It is found that the Ni2+ has been successfully doped into LiFePO4 without affecting the phospho-olivine structure from the XRD result. The images of SEM and TEM show that the size of particles is distributed in the range of 20-60 nm, and all the particles are coated with carbon completely. The results of XPS show the valence state of Fe and Ni in the LiFePO4. The electronic conductivity of the material is as high as 2.1 × 10−1 S cm−1, which should be ascribed to the coefficient of the conductive carbon network and Ni doping. As a cathode material for lithium-ion batteries, the Ni doped LiFePO4/C nanocomposite delivers a discharge capacity of 170 mAh g−1 at 0.2 C, approaching the theoretical value. Moreover, the material shows excellent high-rate charge and discharge capability and long-term cyclability. At the high rates of 10 and 15 C, this material exhibits high capacities of 150 and 130 mAh g−1, retaining 95% after 5500 cycles and 93% after 7200 cycles, respectively. Therefore, the as-prepared material is capable of such large-scale applications as electric vehicles and plug-in hybrid electric vehicles.  相似文献   

11.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

12.
The impact of lithium extraction on the structural stabilities, electronic structures, bonding characteristics, and electrochemical performances of LiFePO4 compound was investigated by first-principles technique. The results demonstrated that the partition scheme of electrons not only affects the calculated atomic charges but also the magnetic properties. In FePO4 and LiFePO4 compounds, all Fe ions take high spin arrangements and have large magnetic moments (MMs), while the MMs of other ions are very small. The magnetisms of LixFePO4 compounds are mainly originated form Fe ions. It was found that the changes in d band electrons of the transition metals do play an important role in determining the voltage of a battery (versus Li/Li+). Furthermore, the variations in d band electrons also provide us a method to control the density of states (DOS) and carrier concentration at the Fermi energy. Our calculations confirmed that the substitution of Fe by Co and Ni ions leads to a voltage increase by about 0.70 V and 1.23 V respectively. According to the bond populations, it can be identified that strong covalent bonds are formed between O and P ions. The P–O bonds are much stronger than Fe–O ones. The partial DOSs further revealed that the covalent bonds in LixFePO4 are derived from the orbital overlaps between O2s,2p and P3s,3p states, and the overlap between Fe3d and O2p states. Such covalent bonds are of particularly importance for the excellent thermodynamic stabilities of the two-ends structures of LixFePO4.  相似文献   

13.
Structural change of Cr-doped LiFePO4/C during cycling is investigated using conventional and synchrotron-based in situ X-ray diffraction techniques. The carbon-coated and Cr-doped LiFePO4 particles are synthesized by a mechanochemical process followed by a one-step heat treatment. The LiFe0.97Cr0.03PO4/C has shown excellent rate performance, delivering the discharge capacity up to 120 mAh/g at 10 C rate. The results suggest that the improvement of the rate performance is attributed to the chromium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and conductivity improvement by carbon coating. Structural analysis using the synchrotron source also indicates that the doped Cr replaces Fe and/or Li sites in LiFePO4.  相似文献   

14.
Olivine structured LiFePO4/C cathode was synthesized via a freeze-drying route and followed by microwave heating with two kinds of carbon sources: PEG-4000 (organic) and Super p (inorganic). XRD patterns indicate that the as-prepared sample has an olivine structure and carbon modification does not affect the structure of the sample. Image of SEM shows a uniform and optimized particles size, which greatly improves the electrochemical properties. TEM result reveals the amorphous carbon around the surface of the particles. At a low rate of 0.1 C, the LiFePO4/C sample presents a high discharge capacity of 157.8 mAh g−1 which is near the theoretical capacity (170 mAh g−1), and it still attains to 149.1 mAh g−1 after 200 cycles. It also exhibits an excellent rate capacity with high discharge capacities of 143.2 mAh g−1, 137.5 mAh g−1, 123.7 mAh g−1 and 101.6 mAh g−1 at 0.5 C, 1.0 C, 2.0 C and 5.0 C, respectively. EIS results indicate that the charge transfer resistance of LiFePO4 decreases greatly after carbon coating.  相似文献   

15.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

16.
The carbon nanospheres-LiFePO4 (CNSs-LiFePO4) composite has been synthesized by PEG (polyethylene glycol, mean molecular weight of 30,000) based sol-gel route. Highly conductive CNSs (30-40 nm) were adopted to improve the electronic conductivity of LiFePO4. PEG was used to promote the dispersion of CNSs with the surface functionalization of CNSs, which could facilitate the coating of CNSs on the surface of the LiFePO4 particles. The sample was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Raman scattering. Electrochemical performance of the CNSs-LiFePO4 composite was characterized by the charge-discharge test and electrochemical impedance spectra measurement. The results indicated that LiFePO4 particles were well coated with the conductive CNSs to overcome the intrinsic low electronic conductivity problem of LiFePO4. The CNSs-LiFePO4 composite delivered an enhanced rate capability (146, 128 and 113 mAh g−1 at 0.1 C, 1 C and 5 C rate). The PEG based sol-gel route enables LiFePO4 networked with CNSs, which offered a higher electrochemical performance.  相似文献   

17.
Lei Wang 《Electrochimica acta》2007,52(24):6778-6783
The precursors of LiFePO4 were prepared by low heating solid-state coordination method using lithium acetate, ammonium dihydric phosphate, ferrous oxalate and citric acid as raw materials. Olivine phase LiFePO4 as a cathode material for lithium-ion batteries was successfully synthesized by microwave heating in a few minutes. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize its structure and morphology. Cyclic voltammetry (CV) and charge-discharge cycling performance were used to characterize its electrochemical properties. The results showed that the grain size of the optimal sample was about 40-50 nm, and the as-prepared particles were homogeneous. The nano-sized LiFePO4 obtained has a high electrochemical capacity (125 mAh g−1) and stable cycle ability.  相似文献   

18.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

19.
LiFePO4/(Ag + C) composite cathodes with a new type of nano-sized carbon webs were synthesized by two methods of an aqueous co-precipitation and a sol-gel process, respectively. Simultaneous thermogravimetric-differential thermal analysis indicates that the crystallization temperature of LiFePO4 is about 455-466 °C, which is close to the pyrolysis temperature of polypropylene, 460 °C. The silver and carbon co-modifying does not affect the olivine structure of LiFePO4 but improves its kinetics in terms of discharge capacity and rate capability. Discharge capacities were improved from 153.4 mA h g− 1 of LiFePO4/C to 160.5 mA h g− 1and 162.1 mA h g− 1 for LiFePO4/(Ag + C) cathodes synthesized by the co-precipitation and sol-gel methods, respectively. The possible reasons for the small difference in discharge capacity of two LiFePO4/(Ag + C) cathodes were discussed. AC impedance measurements show that the Ag + C co-modification decreases the charge transfer resistance of LiFePO4/(Ag + C) cathodes.  相似文献   

20.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号