首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A model has been proposed according to which the voltammetric charge involved in the Ti/IrO2 electrodes is due to two contributions: a faradaic contribution due to surface redox activities at the IrO2 coating and a non-faradaic contribution due to the charging of electrical double layer (). The later has been proposed as a tool for the estimation of the relative surface area of the Ti/IrO2 electrodes.Differential electrochemical mass spectrometry (DEMS) measurements using H218O has demonstrated that we are dealing with an active electrode in which the surface redox couple IrO3/IrO2 acts as mediator in the oxidation of formic acid (FA).From the voltammetric measurements using different IrO2 loading and FA concentrations, the kinetic parameters of FA oxidation via the surface redox couple IrO3/IrO2 have been determined.Finally a model has been proposed considering that FA oxidation at Ti/IrO2 anodes is controlled by mass transfer. The good agreement between the experimental results and the model indicates that the surface reaction between FA and the electrogenerated IrO3 is a fast reaction.  相似文献   

2.
A model describing the hydroxyl radical (HO) concentration profile at the boron-doped diamond (BDD) electrode, in the presence and absence of organic compounds, is presented. It is shown that this profile depends strongly on the reaction rate constant between the HO and the organic compound. Furthermore, it is shown that the presence of organics affects the current-potential (I-V) curves. In fact, the higher the reaction rate between organics and HO, the higher is the shift of the I-V curves toward lower potential with respect to oxygen evolution. Supposing that water discharge to free hydroxyl radicals on BDD is governed by Nernst equation, this shift of the I-V curves toward lower potentials has been calculated and compared with the experimental data obtained on BDD using two model compounds: methanol and formic acid.  相似文献   

3.
The influence of IrO2 loading on the effectiveness factor Ef of the electrochemical oxidation of isopropanol was investigated. A model has been proposed based on three main reactions: electrochemical IrO2 oxidation to IrO3, chemical oxidation of the organic compound via IrO3 and O2 evolution via decomposition of IrO3. It has been found that the relative effectiveness factor Ef for the electrochemical oxidation of IrO2 to IrO3 is loading independent contrary to the chemical reaction which decreases with increasing IrO2 loading.  相似文献   

4.
?. Aydo?an  M. Sa?lam  A. Türüt 《Polymer》2005,46(2):563-568
The polypyrrole/n-Si structure has been directly formed onto the n-Si substrate by the electrochemical polimerization of the organic polypyrrole at 45 °C electrolyte temperature. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the structure have been determined at various temperatures in the range of 77-300 K and different frequencies. Some diode parameters have been calculated from these curves. It has been seen that the measured capacitance decreases with increasing frequency due to a continuous distribution of the interface states in the frequency range of 10 kHz-1 MHz. The barrier heights values obtained from the I-V and C-V characteristics have been compared. It has been seen that the barrier height value obtained from the C-V measurements are higher than that obtained from the I-V measurements at various temperatures. This behaviour has been attributed to the interfacial layer, the interface states and barrier inhomogeneity of the structure. Also this discrepancy can be due to the different nature of the C-V and I-V measurement techniques. A correlation seems to exist between the variation of the band gap and Fermi level energy of Si with temperature.  相似文献   

5.
General analytical expressions for the potential-time (E-t) and derivative-potential ((dt/dE)-E) curves of a electroactive monolayer exhibiting a quasi-reversible behaviour, corresponding to the application of an alternating current time function of the form I(t) = I0 cos(ωt), are presented. The use of this programmed current gives rise to singular and characteristic electrochemical responses. The alternating current also allows to obtain cathodic or both anodic and cathodic responses depending on whether the depletion of the adsorbed species was complete or not, and without using more than one applied current. Moreover, in this last case, it is possible to distinguish a reversible or an irreversible process by means of a simple visualisation of the E-t or (dt/dE)-E curves. Easy methods for estimating thermodynamic and kinetic parameters of the electroactive film are proposed and experimentally tested and compared with those previously obtained by using Cyclic Voltammetry.  相似文献   

6.
Electrocatalytic IrO2-RuO2 supported on Sb-doped SnO2 (ATO) nanoparticles is very active towards the oxygen evolution reaction. The IrO2-RuO2 material is XRD amorphous and exists as clusters on the surface of the ATO. Systematic changes to the surface chemical composition of the ATO as a function of the IrO2:RuO2 ratio suggests an interaction between the IrO2-RuO2 and ATO. Cyclic voltammetry indicates that the electrochemically active surface area of IrO2-RuO2 clusters is maximised when the composition is 75 mol% IrO2-25 mol% RuO2. Decreasing the loading of IrO2-RuO2 on ATO reduces the electrochemically active surface area, although there is evidence to support a decrease in the clusters size with decreased loading. Tafel slope analysis shows that if the clusters are too small, the kinetics of the oxygen evolution reaction are reduced. Overall, clusters of IrO2-RuO2 on ATO have similar or better performance for the oxygen evolution reaction than many previously reported materials, despite the low quantity of noble metals used in the electrocatalysts. This suggests that these oxides may be of economic advantage if used as PEM water electrolysis anodes.  相似文献   

7.
Carbon-supported IrO2 and RuO2 were prepared using an incipient wetness method and were then calcinated at various temperatures. IrO2/C and RuO2/C are less expensive than the conventional Pt/C material and more stable than metal Ni in an acidic electrolyte. Moreover, IrO2/C and RuO2/C are not influenced by under potential deposition (UPD) and show lower sensitivity to poisoning by Ni or Fe impurities. The physical properties of IrO2/C and RuO2/C were investigated via XRD and TEM. Cyclic voltammograms (CV) and Tafel plots were used to provide information regarding surface redox reaction and electrocatalytic activity. The activity and durability of IrO2/C and RuO2/C were studied after prolonged potential cycling between −0.3 and 0.3 VSCE. After comparison of Tafel plots of Pt/C and IrO2/C after activation, it was observed that they have similar electrocatalytic activities in a hydrogen evolution reaction (HER). A single cell test with solid polymer electrolyte (SPE) proved that the performance of IrO2/C (0.5 mg cm−2) was similar to that of Pt/C (0.5 mg cm−2).  相似文献   

8.
The Li3V2(PO4)3/C composite cathode material is synthesized via a simple carbothermal reduction reaction route using polyvinyl alcohol (PVA) as both reduction agent and carbon source. The XRD pattern shows that the as-prepared Li3V2(PO4)3/C composite has a monoclinic structure with space group P21/n. The result of XPS shows the oxidation state of V in the Li3V2(PO4)3/C composite is +3. The Raman spectrum reveals that the coating carbon has a good structure with a low ID/IG ratio. The high-quality carbon can not only enhance the electronic conductivity of the Li3V2(PO4)3/C composite but also prevent the growth of the particle size. The electrochemical performance, which is especially notable for its high-rate performance, is excellent. It delivers an initial discharge capacity of 105.3 mAh/g at 5 C, which is retained as high as 90% after 2000 cycles. No capacity loss can be observed up to 300 cycles under 20 C rate condition. Our experimental results suggest that this compound can be a candidate as cathode materials for the power batteries of hybrid electric vehicles (HEVs) and electric vehicles (EVs) in the future.  相似文献   

9.
An EasyTest Cell concept is applied to study the performance characteristics of the electrochemical processor for polymer electrolyte membrane electrochemical hydrogen energy converters (PEM EHEC), broadly known as a membrane electrode assembly (MEA). A series of MEAs consisting of Nafion 117 polymer electrolyte and magnetron sputtered Pt, IrOx, and composite IrOx/Pt/IrOx catalysts with varying catalytic loadings were investigated. The partial electrode reactions proceeding in the real PEM EHEC, namely hydrogen oxidation (HOR), hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER), are simulated and studied in a recently developed test cell with a unitized gas compartment. The EasyTest Cell design gives possibilities for strict control of the experimental conditions by avoiding the usage of any auxilliary gas conditioning equipment. By varying the thickness of the sputtered Pt film, the catalyst loading is remarkably reduced (from 0.5 to 0.06 mg cm−2 or about 8 times) for both HOR and HER without any sacrifice of the electrode performance. The electrode with 0.2 mg cm−2 sputtered IrOx shows the best OER performance. The composite IrOx/Pt/IrOx electrode demonstrated a bi-functional catalytic activity toward both OER and ORR, as well as improved gas diffusion properties toward ORR compared to the single Pt layer with the same catalytic loading.A phenomenological criterion for evaluating the gas diffusion properties of the electrodes is proposed. The applied testing approach is validated via comparison of the results obtained in the EasyTestCell and the common laboratory PEM electrolytic cell.  相似文献   

10.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

11.
The performance improvement of IrO2 electrode for the oxidative destruction of organics through evaluations of the electrode in terms of material, electrochemical, and destruction organic properties has been carried out by using TGA, XPS, AES, and TOC measurement of 4CP organic destruction at the electrode. A sintering temperature of around 650 °C rather than 400-550 °C suggested in the literature for the Ir oxide electrode enhanced the organic destruction yield because the electrode surface was sufficiently converted to IrO2 from the IrCl3 of the precursor solution. An additional oxide layer between the IrO2 layer and the Ti substrate, to prevent a solid diffusion of TiO2 due to oxidation of the Ti substrate during high-temperature sintering, further improved the organic destruction so that the 4CP destruction yield raised to about four times higher than that by the conventional Ir oxide electrode. The destruction yield of 4CP solution with chloride ion at the improved electrode increased as much as that by an RuO2 electrode sintered at 430 °C in the same solution. The improved Ir oxide electrode had a long lifetime and good production of active chloride compounds.  相似文献   

12.
The metal organic chemical vapor deposition (MOCVD) method was used to prepare GdYBCO films on LaMnO3/ homo epitaxial-MgO/ ion-beam-assisted-deposition-MgO/ solution-deposition-planarization-Y2O3 buffered Hastelloy tapes. By adopting a simple self-heating technique, the substrates were heated by the joule effect after applying a heating current (Ih) through Hastelloy metal tapes. The effects of substrate temperature and (Gd, Y)/Ba ratio (rc) in the precursor on the biaxial texture, surface morphology and superconducting performance of GdYBCO films were systematically investigated by varying the values of Ih and rc. Needle-like outgrowths formed on the substrate surface were characterized using a scanning electron microscope, energy dispersive spectrometer and X-ray diffraction system. The results show that a high Ih or rc leads to the formation of needle-like outgrowths. Therefore, Ih and rc are crucial process parameters that control the growth of needle-like outgrowths on the surface of GdYBCO films. Three hundred nanometer thick GdYBCO films were prepared at different Ih and rc by the MOCVD process. At an Ih of 27.0?A and an rc of 0.6, the surface of the GdYBCO film was very smooth and dense, which can provide a good template for multiple depositions of GdYBCO films. The critical current density of the deposited 300?nm-thick GdYBCO film was 4.4 MA/cm2 (77?K, 0?T), which is attributed to good biaxial texture and appropriate film composition. Furthermore, the microwave surface resistance (77?K, 10?GHz) of the GdYBCO film was merely 0.581?mΩ.  相似文献   

13.
M. Sa?lam  D. Korucu  A. Türüt 《Polymer》2004,45(21):7335-7340
A detailed study of the effects of the time-dependent or aging on the characteristic parameters of polypyrrole/p-type Si/Al structure has been presented. The polypyrrole film has been formed on a p-type Si substrate by means of an anodization process. The polypyrrole/p-Si contact has demonstrated clearly rectifying behavior by the current-voltage curves studied at room temperature. The current-voltage (I-V) curves of the diode have been measured immediately, 7, 15, 30, 60 and 90 days after fabrication of the polypyrrole/p-Si contact. It has been seen that the characteristics parameters such as barrier height, ideality factor and series resistance of polypyrrole/p-type Si/Al structure have changed with increasing ageing time. Furthermore, the density distribution of interface states of the device was obtained from the forward bias I-V characteristics. The fact that the diode shows non-ideal I-V behavior with increasing ageing time may be ascribed to a slow replacement of the initial doping agent by oxygen and this process certainly plays a role in the aging of the diode.  相似文献   

14.
In this paper the effect of the vanadium oxide loading on the surface vanadia structure and the activity as well as selectivity in the catalytic reduction of NO with NH3 was studied for a V2O5/TiO2 model system. A series of TiO2 (WO x stabilized anatase) supported vanadia catalysts with varying loadings were characterized by laser Raman spectroscopy, 51V MAS-NMR, V K XANES. To determine the acidic properties, DRIFTS measurements were done with pyridine adsorbed on the samples. The measurements indicate that with increasing active phase loading square pyramidal coordinated surface vanadia species are replaced by an amorphous highly dispersed vanadium oxide phase with a coordination like V2O5. In addition, the ratio of Brønsted to Lewis acid sites is shifted from a comparatively low to an equal level at high loadings. This structural change is accompanied by a clearly improved catalytic activity and selectivity.  相似文献   

15.
The CaCu3Ti4O12 ceramics were sintered in air and pure O2 atmosphere, respectively, and the effect of pure O2 atmosphere on the electrical behavior of the CaCu3Ti4O12 ceramics was investigated. It was found that the dielectric properties of the CaCu3Ti4O12 ceramics displayed a Debye-like relaxation between 20 Hz and 1 MHz, but the permittivity of the sample sintered in pure O2 atmosphere was decreased drastically. Moreover, the I-V behavior of the ceramic sintered in pure O2 atmosphere presented a linear feature. With XPS analysis, it was illustrated that the valence of Cu and Ti elements in the CaCu3Ti4O12 ceramics had obviously been influenced by the O2 concentration. Based on the experimental comparison of CaCu3Ti4O12 ceramics sintered in air and pure O2 atmosphere, it was suggested that the valence of metallic elements and defects played key role for the origin of the giant permittivity and I-V nonlinear feature in the CaCu3Ti4O12 ceramics.  相似文献   

16.
Yuzhan Li 《Electrochimica acta》2007,52(15):4922-4926
Li3V2(PO4)3/carbon composite material was synthesized by a promising sol-gel route based on citric acid using V2O5 powder as a vanadium source. Citric acid acts not only as a chelating reagent but also as a carbon source, which enhance the conductivity of the composite material and hinder the growth of Li3V2(PO4)3 particles. The structure and morphology of the sample were characterized by TG, XRD and TEM measurements. XRD results reveal that Li3V2(PO4)3/carbon was successfully synthesized and has a monoclinic structure with space group P21/n. TEM images show Li3V2(PO4)3 particles are about 45 nm in diameter embeded in carbon networks. Galvanostatic charge/discharge and cyclic voltammetry measurements were used to study its electrochemical behaviors which indicate the reversibility of the lithium extraction/insertion processes. Li3V2(PO4)3/carbon performed in a voltage window (3.0-4.8 V) exhibits higher discharge capacity, better cycling stability and its discharge capacity maintains about 167.6 mAh/g at a current density of 28 mA/g after 50 cycles.  相似文献   

17.
V2O5/AC has been reported to be active for selective catalytic reduction (SCR) of NO with NH3 at around 200 °C and resistant to SO2 deactivation. To elucidate its SCR mechanism, adsorption and oxidation of NH3 over V2O5/AC are studied in this paper using TG, MS and DRIFTS techniques. It is found that the adsorption and oxidation of NH3 take place mainly at VO bond of V2O5. A higher V2O5 loading results in more NH3 adsorption on the catalyst. V2O5 contains both Brnsted and Lewis acid sites; NH4+ on Brnsted acid sites is less stable and easier to be oxidized than NH3 on Lewis acid sites. Gaseous O2 promotes interaction of NH3 with AC and oxidation of NH3 over V2O5/AC. NH3 is oxidized into NH2 and acylamide structures and then to isocyanate species, which is an intermediate for N2 formation.  相似文献   

18.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

19.
Effects of the electrolyte of DSCs on impedance spectra were evaluated by changing concentration of redox couple, viscosity, and additives to electrolyte. The relation with current-voltage characteristics (I-V characteristics) was investigated. In many cases, the impedance component attributed to charge transfer at TiO2|electrolyte interface demonstrated strong relation with the I-V characteristics. The recombination of electrons in TiO2 with I3 in electrolyte was a key factor in determining performance of DSCs. To evaluate the effect of I3, diffusion-limiting current in the electrolyte for various viscosities was evaluated by cyclic voltammetry. When the short circuit current (SCC) was almost equal to the diffusion-limiting current, strong influence of the diffusion coefficient on the impedance spectra was observed: impedance arcs were enlarged as the diffusion coefficient was decreased. On the other hand, when the diffusion-limiting current was larger than the SCC, photo-excitation and electron injection processes became dominating factors in the DSCs performance. The SCC was regulated by the charge recombination process at TiO2|electrolyte interface, and thus the impedance component ω3 was related to the performance in such condition.  相似文献   

20.
?. Aydo?an  M. Sa?lam  A. Türüt 《Polymer》2005,46(24):10982-10988
The electrical analysis of the PPy/p-Si structure has been investigated by means of I-V, C-V and C-f measurements. The diode ideality factor and the barrier height have been obtained to be n=1.78 and Φb=0.69 eV by applying a thermionic emission theory, respectively. At high current densities in the forward direction, the series resistance effect has been observed. In general, the barrier height obtained from C-V data is greater than obtained from the I-V. This has been explained by introducing a spatial distribution of barrier heights (BHs) due to barrier height inhomogeneities that present at the PPy/p-Si interface. The C-f measurements of the structure have been performed at various biases and it has been seen that they have a good agreement between experimental and theoretical values. The interface state density Nss and relaxation time τ of the structure have been determined from the C-f characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号