首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Sasikumar 《Polymer》2011,52(17):3710-3716
Electroactive conducting copolymers of aniline (ANI) and ethyl 4-aminobenzoate (EAB) were prepared electrochemically. Cyclic voltammetric studies were carried out with different feed concentration of EAB on glassy carbon electrode surface. The voltammograms exhibited different behavior for different concentrations of EAB. The copolymers exhibited high solubility in many polar solvents. The scan rate exerted good influence on the polymer effect on this GCE copolymer film, revealing electroactive film’s excellent adherent properties. The effect of pH on the copolymer film showed that the polymer was electrochemically active up to pH 7.0. Spectroelectrochemical analysis of the copolymer film, carried out on an indium tin oxide (ITO) plate, showed multicolor electrochromic behavior when the applied potential was changed. The color of the copolymer was changed from neutral yellow (422 nm) to green (760 nm) and to blue (600 nm) at the concentration of 0.1 M aniline and 0.1 M EAB in 0.1 M H2SO4 medium. The copolymer was characterized by FT-IR spectral data. The surface morphology were studied using SEM and TEM analysis. The grain size of the copolymer was measured using XRD studies and was found to be 80 nm. The electrical conductivity of the copolymer was 3.21 × 10−2 S cm−1, as determined using a four-probe conductivity meter.  相似文献   

2.
Aniline was copolymerized chemically in presence of five different concentrations of 4,4′-diaminodiphenyl sulphone using potassium persulphate. The copolymer exhibited good solubility in DMF and DMSO. Copolymers were characterized by UV-VIS, FTIR, XRD and SEM studies. The formation of polymer through N-H group was understood from the single N-H stretching vibrational frequency at 3378 cm−1 and bands at 1630 and 1494 cm−1 for quinonoid and benzenoid structures, respectively. The stretching vibration of sulphone SO at 1115 cm−1 clearly indicated the presence of DDS in the copolymer. The X-ray diffraction studies revealed the formation of nano sized crystalline copolymer. When more DDS was incorporated in the copolymer the crystalline nature changed from less to more. The grain size of the copolymer calculated from Scherrer's formula was 83 nm. The nano size copolymer formation was also confirmed through surface morphology (100 nm) studies. The electrical property of the copolymer was studied by four-probe conductivity meter. The synthesized polymers have conductivity of 7.21 × 10−3 to 2.07 × 10−3 S cm−1. The voltammetric and spectroelectrochemical results were also presented.  相似文献   

3.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

4.
Jingling Yan 《Polymer》2007,48(21):6210-6214
A series of sulfonated polyimides (SPIs) were synthesized in m-cresol from 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride (BNTDA), 4,4′-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4,4′-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 °C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 °C and 100% relative humidity (RH), and increased to 0.1149-0.9470 S/cm at 80 °C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 × 10−7 cm2/s, which are much lower than that of Nafion 117 (2 × 10−6 cm2/s).  相似文献   

5.
A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag+. UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag+ at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag+ concentration over the range from 6.0 × 10−10 mol L−1 to 1.0 × 10−6 mol L−1, with a detection limit of 4.0 × 10−10 mol L−1. The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag+ in water samples.  相似文献   

6.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

7.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

8.
Poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid) (PAAHB) was synthesized using chemical oxidative copolymerization of aniline and 2-amino-4-hydroxybenzenesulfonic acid (AHB) in the presence of an ionic liquid at 50 °C. The conductivity of the PAAHB copolymer synthesized at the optimum conditions is 0.47 S cm−1 that is lower than that of polyaniline, but is slightly affected by water. The cyclic voltammograms demonstrate that the PAAHB copolymer has excellent redox activity from highly acidic solution to pH 12.0 in a wider potential range. This is attributed to the synergistic effect of the SO3 and OH functional groups in the copolymer chain and the ionic liquid incorporated into the PAAHB film. It is evident that the pH dependence of the redox activity and conductivity of the PAAHB copolymer prepared chemically is much better than that of polyaniline, and is further improved, compared to the PAAHB copolymer prepared electrochemically. The proton NMR spectrum of the PAAHB copolymer demonstrates that the SO3 group exists in the copolymer chain instead of the SO3H group. The ESR spectra show that the ESR signal intensity is a function of the monomer concentration ratio of AHB to aniline in the mixture. The morphology of the PAAHB copolymer is also dependent on the monomer concentration ratio in the mixture.  相似文献   

9.
Stable Nafion-Au colloids were immobilized on a glassy carbon electrode (GCE) for detection of β-agonist clenbuterol by electroanalysis. The Au colloids were prepared by a one-step electrodeposition onto GCE, with obvious electrocatalytic activity present. The negatively charged Nafion film was an efficient barrier to negatively charged interfering compounds, resulting in accumulation of positively charged clenbuterol at the Nafion film. The electrochemical characters of the electrode during various modified steps in a redox probe system of K4[Fe(CN)6]/K3[Fe(CN)6] were confirmed by cyclic voltammetry (CV) and AC-impedance. In Britton-Robinson (B-R) buffer solution (pH = 2.0) and the potential range of −0.2 to 1.2 V, the Nafion-Au colloid modified electrode, compared to a bare GCE, exhibits obvious electrocatalytic activity towards the redox of clenbuterol by greatly enhancing the peak current with a linear calibration curve from 8.0 × 10−7 to 1.0 × 10−5 mol/L and a detection limit of (1.0 × 10−7 mol/L) (R = 0.996). The modified electrode shows high sensitivity, selectivity and reproducibility. The recovery for detecting clenbuterol (∼10−6 mol/L) in human serum is up to 98.19%.  相似文献   

10.
Electroactive copolymers of m-toluidine (MT) and o-phenylenediamine (OPD) were prepared electrochemically in aqueous sulfuric acid by potential cycling and characterized with cyclic voltametry, in situ conductivity measurements and FT-IR spectroscopy. The voltammograms of the copolymers exhibit different behavior for different concentrations of OPD in the comonomer feed. At optimum conditions the resulting poly(OPD-co-MT) shows an extended useful potential range of the redox activity as compared to the corresponding homopolymers. The effect of scan rate and pH on the electrochemical activity was studied. The copolymer was electrochemically active even at pH 8.0. The stability of the copolymer film was also tested. The copolymer has a potential region of maximum conductivity different from that of PMT and POPD. The conductivity of the copolymer is between the conductivity of the homopolymers. The vibrational bands at 3122/3450 and 2922/875 cm−1 in the FT-IR spectra of the copolymer indicate the presence of both OPD and MT units, respectively, in the copolymer backbone.  相似文献   

11.
In this work, monomer solutions of aniline (ANI) and 2,2′-dithiodianiline (DTDA), an aniline derivative containing -S-S- links, were prepared and used in the electrochemical copolymerisation of ANI and DTDA by cyclic voltammetry on a screen-printed electrode (SPE) in 1 M HCl. Electropolymerisation of aniline on the surface of the screen-printed working electrode was performed by sweeping the potential between −500 and + 1100 mV (vs. Ag/AgCl) at a sweep rate of 100 mV/s. Electrocopolymerisation was performed with a mixture of ANI and DTDA by sweeping the potential between −200 and + 1100 mV (vs. Ag/AgCl) at a sweep rate of 100 mV/s [J.L. Hobman, J.R. Wilson, N.L. Brown, in: D.R. Lovley (Ed.), Environmental Microbe Metal Interactions, ASM Press, Herndon, Va, 2000, p. 177]. The cyclic voltammogram (CV) for each of the electrochemically deposited polyaniline (PANI) and the mixture of ANI and DTDA for the co-polymer polymerisation on SPCE were recorded for electrochemical analysis of the peak potential data for the mono and copolymer. Anodic stripping voltammetry (ASV) was used to evaluate a solution composed of (1 × 10−6 M HgCl2, 0.1 M H2SO4, 0.5 M HCl), in the presence of the co-polymer sensor electrode. The Hg2+ ions were determined as follows: (i) pre-concentration and reduction on the modified electrode surface and (ii) subsequent stripping from the electrode surface during the positive potential sweep. The experimental conditions optimised for Hg2+ determination included the supporting electrolyte concentration and the accumulation time. The results of the study have shown the use of a conducting polymer modified SPCE as an alternative transducer for the voltammetric stripping and analysis of inorganic Hg2+ ions.  相似文献   

12.
Copolymerization of aniline and p-aminophenol in aqueous sulfuric acid solutions was electrochemically performed using cyclic voltammetry on platinum electrodes. The monomer concentration ratio can strongly affect the copolymerization rate and electrochemical property of the copolymer. The optimum conditions for the copolymerization are that the potential sweep covers the −0.20 to 0.95 V (vs. SCE) potential range, and that a solution contains 0.18 M aniline, 0.02 M p-aminophenol and 0.50 M H2SO4. A resulting copolymer synthesized under the optimum conditions has a good electrochemical activity in 0.50 M solutions of Na2SO4 with pH ≤ 10.0. IR and XPS spectra indicate that -OH groups and SO42− ions are contained in the resulting copolymer. The SEM images reveal that the microstructure of the copolymer depends on the monomer concentration ratio during the electrolysis.  相似文献   

13.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

14.
The electrochemical oxidation of neutral red in 0.5 mol dm−3 sulfuric acid and 0.2 mol dm−3 ferrocenesulfonic acid solution was carried out using repeated potential cycling between −0.20 and 1.40 V (versus SCE). The polymer film was electrochemically deposited on a platinum anode and had an electrochemical activity in the solution of 0.5 mol dm−3 Na2SO4 with pH ≤ 7.0. The result from the X-ray photoelectron spectroscopy (XPS) experiment shows that the anions can be doped into the polymer film during the electrochemical polymerization reaction of neutral red. The scanning electron microscopy (SEM) micrograph shows that the surface of the resulting polymer film formed on the platinum foil is covered with a compact surface consisting of micro fibers. The visible spectrum and infrared spectrum (IR) of the polymer are different from those of the corresponding monomer. A possible chemical structure of the resulting polymer was also proposed.  相似文献   

15.
The electrochemical oxidation of neutral red in 0.5 mol dm−3 H2SO4 solution was carried out by using repeated potential cycling between −0.20 and 1.20 V (versus SCE). The polymer film was electrochemically deposited on a platinum anode and had an electrochemical activity in the solution of 0.5 mol dm−3 Na2SO4 with pH ≤ 4.0. The result from the X-ray photoelectron spectroscopy (XPS) experiment shows that the anions can be doped into the polymer film during the electropolymerization reaction of neutral red. The scanning electron microscopy (SEM) micrograph shows the surface of poly(neutral red) film deposited on the platinum foil is covered with a micro-structured network of mass interwoven fibers with a diameter of 2-4 μm. A straight fiber of the unsystematic micro-fibers is longer than 0.4 mm. The UV-vis spectrum and infrared spectrum (IR) of the polymer are different from those of the monomer.  相似文献   

16.
Electrochromic properties of a novel low band gap conductive copolymer   总被引:1,自引:0,他引:1  
A copolymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) with 3,4-ethylene dioxythiophene (EDOT) was electrochemically synthesized. The resultant copolymer P(DTTP-co-EDOT) was characterized via cyclic voltammetry, FTIR, SEM, conductivity measurements and spectroelectrochemistry. Copolymer film has distinct electrochromic properties. It has four different colors (chestnut, khaki, camouflage green, and blue). At the neutral state λmax due to the π-π* transition was found to be 487 nm and Eg was calculated as 1.65 eV. Double potential step chronoamperometry experiment shows that copolymer film has good stability, fast switching time (less than 1 s) and good optical contrast (20%).An electrochromic device based on P(DTTP-co-EDOT) and poly(3,4-ethylenedioxythiophene) (PEDOT) was constructed and characterized. The device showed reddish brown color at −0.6 V when the P(DTTP-co-EDOT) layer was in its reduced state; whereas blue color at 2.0 V when PEDOT was in its reduced state and P(DTTP-co-EDOT) layer was in its oxidized state. At 0.2 V intermediate green state was observed. Maximum contrast (%ΔT) and switching time of the device were measured as 18% and 1 s at 615 nm. ECD has good environmental and redox stability.  相似文献   

17.
Direct anodic oxidation of (S)-(−)-1,1′-bi-2-naphthol dimethyl ether (BNME) in CH2Cl2/CHCl3 containing boron trifluoride diethyl etherate (BFEE) as the supporting electrolyte led to facile electrodeposition of high-quality free-standing poly((S)-(−)-1,1′-bi-2-naphthol dimethyl ether) (PBNME) film on stainless steel (SS)/indium tin oxide (ITO) electrodes. As-formed PBNME films showed good electroactivity and redox stability in CH2Cl2-BFEE, BFEE, and even in concentrated sulfuric acid. Both doped and dedoped PBNME films were partly soluble in strong polar solvents, such as dimethyl sulfoxide (DMSO). Quantum chemistry calculations of BNME and FT-IR spectrum of dedoped PBNME films demonstrated that the polymerization probably occurred at 4- and 4′-positions. Optical rotation determination showed that the conformation of the monomer was maintained during the electrochemical polymerization process and the polymer exhibited greatly enhanced optical rotation value with main chain axial chirality compared with that of the monomer. Fluorescent spectral studies indicated that soluble PBNME was a good blue-light emitter with maximum emission at 415 nm and fluorescence quantum yield of 0.15, while solid-state PBNME film showed its emission centered at 380 nm. Furthermore, as-formed PBNME manifested favorable thermal stability and relatively high electrical conductivity of about 10−1 S cm−1 at room temperature.  相似文献   

18.
Nitro-group-substituted oligopyrene (ONP) film with fairly high electrical conductivity (1.25 × 10−1 S cm−1) and good thermal stability was electrochemically synthesized by direct anodic oxidation of its monomer 1-nitropyrene (NP) in boron trifluoride diethyl etherate (BFEE). The oxidation potential of NP in this medium was determined to be 1.12 V vs. SCE, which was lower than that in acetonitrile +0.1 mol L−1 Bu4NBF4 (1.27 V vs. SCE). ONP films obtained from this medium showed good redox activity and structural stability in both BFEE and concentrated sulfuric acid. Fourier transform infrared spectra and theoretical calculations showed that the electropolymerization of the NP monomer mainly occurred at the C(3), C(6) and C(8) positions. The fluorescence spectra suggested that soluble ONP emits strong blue or green fluorescence when excited at 402 nm or 504 nm, respectively. Scanning electron microscopy showed that highly crystalline nitro-group-substituted oligopyrene was formed on the electrode surface. All these results indicate that as-prepared ONP film has many potential applications in various fields.  相似文献   

19.
An alkaline polymer gel electrolyte (PGE) film was prepared by solution polymerization of acrylate-KOH-H2O at room temperature, and the preparation conditions were optimized in view of the mechanical properties and ionic conductivity of the film. The PGE film with the optimized composition of 0.02% K2S2O8, 16.75% acrylic acid and 83.23 wt.% 4 mol l−1 KOH solution is transparent, rubber-like and dimensionally stable with improved mechanical properties as compared with gelled electrolyte. The specific conductivity of the film is 0.288 s cm−1 at room temperature and the conductivity values follow the Arrhenius equation with the activation energy of ∼10 kJ mol−1. These data suggest that the ionic conduction proceeds in the same mechanism as in aqueous alkaline solution. Experimental results from the laboratory Zn/Air, Zn/MnO2 and Ni/Cd cells using the PGE film as electrolyte demonstrate that the PGE film has almost the same chemical and electrochemical stability as aqueous alkaline solution, and shows good performance characteristics for application of alkaline primary and secondary battery systems.  相似文献   

20.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号