首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (TPTZ) was used as a ligand to prepare iron-TPTZ (Fe-TPTZ) complexes for the development of a new oxygen reduction reaction (ORR) catalyst. The prepared Fe-TPTZ complexes were then heat-treated at temperatures ranging from 400 °C to 1100 °C to obtain carbon-supported Fe-N catalysts (Fe-N/C). These catalysts were characterized in terms of catalyst composition, structure, and morphology by several instrumental methods such as energy dispersive X-ray, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. With respect to the ORR activity, the Fe-N/C catalysts were also evaluated by cyclic voltammetry, as well as rotating disk and ring-disk electrodes. The results showed that among the heat-treated catalysts, that obtained at a heat-treatment temperature of 800 °C is the most active ORR catalyst. The overall electron transfer number for the catalyzed ORR was determined to be between 3.5 and 3.8, with 10-30% H2O2 production. The ORR catalytic activity of this catalyst was also tested in a hydrogen-air proton exchange membrane (PEM) fuel cell. At a cell voltage of 0.30 V, this fuel cell can give a current density of 0.23 A cm−2 with a maximum MEA power density of 0.070 W cm−2 indicating that this catalyst has potential to be used as a non-noble catalyst in PEM fuel cells.  相似文献   

2.
Kinetics of RuxMoySez nanoparticles dispersed on carbon powder was studied in 0.5 M H2SO4 electrolyte towards the oxygen reduction reaction (ORR) and as cathode catalysts for a proton exchange membrane fuel cell (PEMFC). RuxMoySez catalyst was synthesized by decarbonylation of transition-metal carbonyl compounds for 3 h in organic solvent. The powder was characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Catalyst is composed of uniform agglomerates of nanocrystalline particles with an estimated composition of Ru6Mo1Se3, embedded in an amorphous phase. The electrochemical activity was studied by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. Tafel slopes for the ORR remain invariant with temperature at −0.116 V dec−1 with an increase of the charge transfer coefficient in dα/dT = 1.6 × 10−3, attributed to an entropy turnover contribution to the electrocatalytic reaction. The effect of temperature on the ORR kinetics was analyzed resulting in an apparent activation energy of 45.6 ± 0.5 kJ mol−1. The catalyst generates less than 2.5% hydrogen peroxide during oxygen reduction. The RuxMoySez nanoparticles dispersed on a carbon powder were tested as cathode electrocatalyst in a single fuel cell. The membrane-electrode assembly (MEA), included Nafion® 112 as polymer electrolyte membrane and commercial carbon supported Pt (10 wt%Pt/C-Etek) as anode catalyst. It was found that the maximum performance achieved for the electro-reduction of oxygen was with a loading of 1.0 mg cm−2 RuxMoySez 20 wt%/C, arriving to a power density of 240 mW cm−2 at 0.3 V and 80 °C.  相似文献   

3.
SnOx thin films were prepared by reactive radio frequency magnetron sputtering with different sputtering powers. X-ray photoelectron spectroscopy suggested that all the films have similar chemical stoichiometry as SnO1.5. X-ray diffraction and transmission electro microscopy results showed that crystal size of the SnOx thin films gradually increases with increase of sputtering power from 50 to 150 W. Cyclic voltammetry and galvanostatic charge/discharge cycling measurements indicated that the electrochemical properties of SnOx films strongly rely on their crystal sizes as well as surface morphologies. The SnOx film deposited at sputtering power of 120 W exhibits the best electrochemical performances. It could deliver a reversible capacity of 670 μAh cm−2 μm−1 at 50 μA cm−2 in the voltage range of 0.1-1.2 V up to 50 cycles.  相似文献   

4.
An EasyTest Cell concept is applied to study the performance characteristics of the electrochemical processor for polymer electrolyte membrane electrochemical hydrogen energy converters (PEM EHEC), broadly known as a membrane electrode assembly (MEA). A series of MEAs consisting of Nafion 117 polymer electrolyte and magnetron sputtered Pt, IrOx, and composite IrOx/Pt/IrOx catalysts with varying catalytic loadings were investigated. The partial electrode reactions proceeding in the real PEM EHEC, namely hydrogen oxidation (HOR), hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER), are simulated and studied in a recently developed test cell with a unitized gas compartment. The EasyTest Cell design gives possibilities for strict control of the experimental conditions by avoiding the usage of any auxilliary gas conditioning equipment. By varying the thickness of the sputtered Pt film, the catalyst loading is remarkably reduced (from 0.5 to 0.06 mg cm−2 or about 8 times) for both HOR and HER without any sacrifice of the electrode performance. The electrode with 0.2 mg cm−2 sputtered IrOx shows the best OER performance. The composite IrOx/Pt/IrOx electrode demonstrated a bi-functional catalytic activity toward both OER and ORR, as well as improved gas diffusion properties toward ORR compared to the single Pt layer with the same catalytic loading.A phenomenological criterion for evaluating the gas diffusion properties of the electrodes is proposed. The applied testing approach is validated via comparison of the results obtained in the EasyTestCell and the common laboratory PEM electrolytic cell.  相似文献   

5.
Nickel oxide films were synthesized by electrochemical precipitation of Ni(OH)2 followed by heat-treatment in air at various temperatures (200-600 °C). Their structure and electrochemical properties were studied by cyclic voltammetry, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). XRD results showed that the nickel oxide obtained at 250 °C or above has a crystalline NiO structure. The specific capacitance of the oxide depends on the heat-treatment temperature, showing a maximum value at 300 °C. XAS results revealed that the non-stoichiometric nickel oxide (Ni1−xO) approached the stoichiometric NiO structure with increasing heat-treatment temperature due to the defect healing effect. The defective nature of the nickel oxide could be utilized to improve its specific capacitance for supercapacitor application.  相似文献   

6.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

7.
Haitao Gu 《Electrochimica acta》2009,54(27):7094-9945
The electrochemical properties of LaBaCo2O5+δ-xSm0.2Ce0.8O1.9 (LBCO-xSDC, x = 20, 30, 40, 50, 60, wt%) were investigated for the potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The LBCO-50SDC composite cathode exhibited the best electrochemical performance in the LBCO-xSDC cathodes. With x = 50 wt%, the ASR was 1.308 Ω cm2 at 500 °C (0.267 Ω cm2 at 600 °C and 0.052 Ω cm2 at 700 °C). The maximum of exchange current density i0 was 0.5630 A cm−2 at 700 °C. The improved electrochemical properties of LBCO-50SDC were ascribed to the porous structures of the cathode and more cathode/electrolyte/gas triple phase boundary (TPB) areas.  相似文献   

8.
Co-C-N and Fe-C-N thin film catalysts have been modified by controlled doping with boron. Corresponding novel thin film catalysts Co-C-N-B and Fe-C-N-B were synthesized by combinatorial magnetron sputter deposition in an Ar/N2 gas mixture followed by subsequent heat-treatment between 700 and 1000 °C in an argon atmosphere. The nitrogen content of the as-prepared thin film catalysts could be increased by the addition of boron. Furthermore, the amount of remaining nitrogen in heat-treated catalyst samples was significantly higher in case of boron containing samples. The thin film catalysts were characterized by means of X-ray diffraction (XRD) analysis, electron microprobe and electrochemical measurements. For electrochemical studies the activity as oxygen reduction reaction (ORR) catalyst was investigated using the rotating ring-disk electrode (RRDE) technique in 0.1 M HClO4 solution at room temperature. The catalytic activity was found to decrease with the boron content in the thin film catalysts even though the N-content increased.  相似文献   

9.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

10.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

11.
Novel carbon supported Pt/SnOx/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, COad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnOx/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnOx/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 °C. On all Pt/SnOx/C catalysts, acetic acid and acetaldehyde represent dominant products, CO2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol−1), but are lower than on Pt/C (32 kJ mol−1). The somewhat better performance of the Pt/SnOx/C catalysts compared to alloyed PtSnx/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.  相似文献   

12.
2,3,5,6-Tetra(2-pyridyl)pyrazine (TPPZ) was employed as a ligand to prepare an iron(II) complex (Fe–TPPZ) that served as a precursor to synthesize carbon-supported catalysts (Fe–Nx/C) through heat-treatment at 600, 700, 800 and 900 °C under N2 atmosphere. Both the structure and composition of the synthesized Fe–Nx/C were analyzed by X-ray diffraction and energy-dispersive X-ray microanalysis, respectively. The rotating disk and ring-disk electrode measurements showed that these catalysts have strong ORR activity with an overall 4-electron transfer process through a (2 + 2)-electron transfer mechanism, which was assigned to the catalytic function of the Fe–Nx center. A study on the heat-treatment temperature on the ORR activity showed that 800 °C is the optimal temperature for the synthesized catalysts. Furthermore, the effect of both catalyst and Nafion® ionomer loadings in the catalyst layer on the corresponding ORR activity was also investigated. The kinetic parameters such as the chemical reaction rate between O2 and Fe–Nx/C (adduct formation reaction), the rate constant for the rate-determining step (RDS), and the electron numbers in the ORR, were obtained. The methanol tolerance of the catalyst was also tested. To validate the ORR activity, a membrane electrode assembly in which the cathode catalyst layer contained Fe–Nx/C was constructed and tested in a real fuel cell. The results obtained are encouraging when compared with similar non-noble catalysts.  相似文献   

13.
Tantalum (oxy)nitrides (TaOxNy) have been investigated as new cathodes for polymer electrolyte fuel cells without platinum. TaOxNy films were prepared using a radio frequency magnetron sputtering under Ar + O2 + N2 atmosphere at substrate temperatures from 50 to 800 °C. The effect of the substrate temperature on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the TaOxNy films were examined. The catalytic activity of the TaOxNy for the ORR increased with the increasing substrate temperature. The ORR current density at 0.4 V vs. RHE on TaOxNy prepared at 800 °C was approximately 20 times larger than that on TaOxNy prepared at 50 °C. The onset potential of the TaOxNy for the ORR was obtained at the ORR current density of −0.2 μA cm−2. The onset potential of the TaOxNy prepared at 800 °C was ca. 0.75 V vs. RHE. The X-ray diffraction patterns revealed that Ta3N5 structure grew as the substrate temperature increased. While, the ionization potentials of all specimens were lower than that of Ta3N5, and decreased with the increasing substrate temperature. The TaOxNy which had Ta3N5 structure and lower ionization potential might have a definite catalytic activity for the ORR.  相似文献   

14.
Feng Wu  Lian Wang  Ying Bai 《Electrochimica acta》2009,54(20):4613-25518
The Li1+xV3O8 material was successfully synthesized at 450 °C in short sintering duration by microwave sol-gel route. X-ray diffraction suggests oxygen defects in the lattice. Based on Randles-Sevcik formula, cyclic voltammograms measurements were conducted to measure Li+ ion diffusion coefficient. The material exhibits high discharge capacity of 250 mA g−1 at 0.2 mA/cm2 after 30 cycles in the range of 2.0-4.0 V. Alternating current impedance tests show that the growth of the charge transfer resistance at 0.4 mA/cm2 is more rapid than that of at 0.2 mA/cm2 as the galvanostatical charge-discharge continues.  相似文献   

15.
The ammonia-treated carbon-supported cobalt tungsten (Co-W/C) was prepared by a reaction employing a temperature program in a stream of NH3 between 773 and 1073 K. The effects of the NH3 heat-treatment temperature, Co-W ratio and the preparation method were investigated. The activity of Co-W/C for the oxygen reduction reaction (ORR) was evaluated using a rotating disc electrode and single fuel cell measurements. The Co-W/C prepared by the impregnation method with the same atomic ratio of Co and W, and NH3 heat treated at 823 K, exhibited the highest ORR activity with an onset potential of 0.74 V (vs. RHE at 5 μA cm−2). The XRD and temperature-programmed measurements revealed that the catalyst active species were ascribed to the presence of CoW oxynitride and Co nitride. The catalyst surface was characterized as nitrided metal (accommodation of the N-atom in the host Co-W lattice resulting from a sufficient distance between the Co-W atoms and N) and N-containing carbon (Co surrounded by N-atoms and attached to the C support) by X-ray photoelectron spectroscopy. The Co-W oxynitrides, Co nitride and pyrrolic-type nitrogen of the N-containing carbons are likely responsible for the good ORR activity.  相似文献   

16.
The LiZnxMn2−xO4 (x = 0.00-0.15) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 °C. After drying, the gel precursors were ground and heated at 900 °C. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valance state of Mn in the synthesized materials. The sample exhibited a well-defined spinel structure and the lattice parameter was linearly increased with increasing the Zn contents in LiZnxMn2−xO4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmission electron microscopy, respectively. Electrochemical properties were characterized for the assembled Li/LiZnxMn2−xO4 coin type cells using galvanostatic charge/discharge studies at 0.5 C rate and cyclic voltammetry technique in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s−1. Among them Zn doped spinel LiZn0.10Mn1.90O4 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.  相似文献   

17.
A non-platinum cathode electrocatalyst must have the stability and catalytic activity for the oxygen reduction reaction (ORR) in order to be used in polymer electrolyte fuel cells (PEFCs). Titanium oxide catalysts as the non-platinum catalyst were prepared by the heat treatment of titanium sheets in the temperature range from 600 to 1000 °C. The prepared catalysts were chemically and electrochemically stable in 0.1 mol dm−3 H2SO4. The titanium oxide catalysts showed different catalytic activities for the ORR. The ORR of the catalysts heat-treated at around 900 °C occurred at the potential of about 0.65 V versus RHE. It is considered that the deference in the catalytic activity for the ORR of the heat-treated titanium oxide catalysts was due to the fact that the heat-treatment condition changed the material property of the catalyst surface. In particular, it was found that the catalytic activity for the ORR of the Ti oxide catalysts increased with the increase in the specific crystalline structure, such as the TiO2 (rutile) (1 1 0) plane and the work function. It is considered that a surface state change, such as the crystalline structure and work function, might affect the catalytic activity for the ORR.  相似文献   

18.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

19.
A series of cathode materials for lithium ion batteries with the formula LiV3−xNixO8 (x = 0.000, 0.025, 0.050 and 0.100) have been synthesized by a novel low-temperature solid-state method. The synthesized cathode materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), discharge-charge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). These results indicate that LiV2.95Ni0.050O8 shows much better electrochemical performances than LiV3O8. This is due to better electrochemical reversibility and lower particle-to-particle resistance after Ni2+ doping.  相似文献   

20.
Li2Fe1−xMnxSi04/C cathode materials were synthesized by mechanical activation-solid-state reaction. The effects of Mn-doping content, roasting temperature, soaking time and Li/Si molar ratio on the physical properties and electrochemical performance of the Li2Fe1−xMnxSi04/C composites were investigated. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), charge-discharge tests and AC impedance measurements. SEM images suggest that the morphology of the Li2Fe1−xMnxSi04/C composite is sensitive to the reaction temperature. Samples synthesized at different temperatures have different extent of agglomeration. Being charged-discharged at C/32 between 1.5 and 4.8 V, the Li2Fe0.9Mn0.1Si04/C synthesized at the optimum conditions shows good electrochemical performances with an initial discharge capacity of 158.1 mAh g−1 and a capacity retention ratio of 94.3% after 30 cycles. AC impendence investigation shows Li2Fe0.9Mn0.1SiO4/C have much lower resistance of electrode/electrolyte interface than Li2FeSiO4/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号