首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et4N+) and tetrafluoroborate (BF4) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et4N+ into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li+. For the positive electrode, BF4 was shown to intercalate above +4.3 V versus Li/Li+. The characteristic G-band doublet peak (E2g2(i) (1578 cm−1) and E2g2(b) (1600 cm−1)) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm−1) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm−1) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM).  相似文献   

2.
[PFeW11O39]4− (PFeW11) supported on the surface of 3-aminopropyl(triethoxy)silane modified silica gel was synthesized and used as a bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The electrochemical behavior of the modified electrode was investigated. Cyclic voltammetry studies showed that the PFeW11 on the electrode surface sustained the same electrochemical properties as that of the PFeW11 in solution. The preparation of chemically modified electrode is simple and quiet reproducible using inexpensive material. The modified electrode had high electrocatalytic activity toward H2O2 reduction and it was successfully applied as an electrochemical detector to monitor H2O2 in flow injection analysis (FIA). The electrocatalytic peak current was found to be linear with the H2O2 concentration in the range 10-200 μmol L−1 with a correlation coefficient of 0.998 and a detection limit (3σ) of 7.4 μmol L−1 H2O2. The electrode has the remarkable advantage of surface renewal owing to bulk modification, as well as simple preparation, good mechanical and chemical stability and reproducibility.  相似文献   

3.
A series of novel single-phase white phosphors Ba1.3Ca0.69−x−ySiO4:0.01Eu2+,xMn2+, yDy3+ were synthesized by the solid-state method. The excitation spectra of these phosphors exhibit a broad band in the range of 260–410 nm, which can meet the application requirements for near-UV LED chips (excited at 350–410 nm). The emission spectra consist of two broad bands positioned around 455 nm and 596 nm, which are assigned to 5d→4f transition of Eu2+, and 4T16A1 transition of Mn2+, respectively. The luminescence intensity of phosphors enhances obviously by doping Dy3+ ions, and the intensity of two bands reaches an optimum when Dy3+ amounts to 2 mol%. In addition, thermoluminescence investigation of phosphor was conducted, getting two shallow trap defects with activation energy of 0.43 eV and 0.45 eV, which demonstrates the energy transfer mechanism of Dy–Eu through the process of hole and electron traps. By precisely tuning the Mn2+ content, an optimized white light with color rendering index (CRI) of Ra=84.3%, correlated color temperature (CCT) of Tc=8416 K and CIE chromaticity coordinates of (0.2941, 0.2937) is generated. The phosphor could be a potential white phosphors for near-UV light emitting diodes.  相似文献   

4.
An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN)63−/Fe(CN)64− as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 × 103 to 3.0 × 107 cfu mL−1 with the detection limit of 1.0 × 103 cfu mL−1. With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples.  相似文献   

5.
A series of Ba2Mg1−xMnxP4O13 (x = 0-1.0) and Ba1.94Eu0.06Mg1−xMnxP4O13 (x = 0-0.15) phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), the photoluminescence spectra, and the decay curves are investigated. XRD analysis shows that the maximum tolerable substitution of Mn2+ for Mg is about 50 mol% in Ba2MgP4O13. Mn2+-singly doped Ba2MgP4O13 shows weak red-luminescence peaked at about 615 nm. The Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 430 nm originating from Eu2+ and a broad red-emitting one peaked at 615 nm from Mn2+ ions. The luminescence of Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ in Ba2MgP4O13. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. The emission colors could be tuned from the blue to the red-purple and eventually to the deep red. The resonance-type energy transfer via a dipole-quadrupole interaction mechanism is supported by the decay lifetime data. The energy transfer efficiency and the critical distance are calculated and discussed. The temperature dependent luminescence spectra of the Eu2+/Mn2+ co-doped phosphor show a good thermal stability on quenching effect.  相似文献   

6.
In this work, Ni(OH)2 nanoplates grown on the Cu substrate were synthesized and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Then a novel Cu-Ni(OH)2 modified glass carbon electrode (Cu-Ni(OH)2/GCE) was fabricated and evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and typical amperometric response (i-t) method. Exhilaratingly, the Cu-Ni(OH)2/GCE shows significant electrocatalytic activity toward the reduction of H2O2. At an applied potential of −0.1 V, the sensor produces an ultrahigh sensitivity of 408.1 μA mM−1 with a low detection limit of 1.5 μM (S/N = 3). The response time of the proposed electrode was less than 5 s. What's more, the proposed sensor displays excellent selectivity, good stability, and satisfying repeatability.  相似文献   

7.
A sensitive and rapid electrochemiluminescence (ECL) method for the detection of N6-Methyladenosine (m6A) in urine samples on a heated indium-tin-oxide (ITO) electrode is presented. The ECL intensity of Tris(2,2′-bipyridyl) dichlororuthenium(II)hexahydrate (Ru(bpy)32+) can be enhanced by the presence of m6A. Experimental results showed that the change of ECL intensities (ΔI) of the Ru(bpy)32+ between before and after addition of m6A was affected by the working electrode surface temperature (Te); the highest ΔI occurred at 31 °C. Under optimum conditions, the ΔI had a linear relationship with the m6A concentration in the range of 1.9 × 10−9-3.9 × 10−6 mol/L and a detection limit of 7.7 × 10−10 mol/L (S/N = 3) at Te = 31 °C. The recovery of m6A standards added to urine samples verified the accuracy of the proposed method.  相似文献   

8.
Chengguo Hu 《Electrochimica acta》2006,51(15):3013-3021
MWNTs can be conveniently dispersed in Nafion solution on the basis of the special interactions between the sidewall of MWNTs and the hydrophobic domains of Nafion. Casting of the resulting mixture on electrode surfaces produced uniform composite films having wide electroanalytical applications. In this work, the electrochemical properties of the MWNTs-Nafion composite film on a glassy carbon electrode were systematically investigated by various electrochemical methods using incorporated europium(III) ions (Eu3+) as the probe. The voltammetric studies showed that the increase of MWNTs concentration in the composite film could effectively improve the redox currents of Eu3+ and reduce the peak separation, whereas the increase of Nafion concentration generally increased both the redox currents and the peak separation. These results suggested the different roles of MWNTs and Nafion in the composite films. The electrochemical impedance spectroscopic (EIS) investigations showed that MWNTs mainly contributed to the charge transfer and mass transfer processes of the composite film through the increases of the electrode/electrolyte interfacial area and the film porosity while Nafion generally dominated the mass transport from the solution into the film via ion exchange. The potential application of the sensitive response of Eu3+ at the MWNTs-Nafion composite film in electroanalytical chemistry was evaluated. In the range of 0.04-100 μM, the concentration of Eu3+ showed excellent linear relationships with the differential pulse voltammetric response with a low detection limit of 10 nM (S/N = 3) for 60 s accumulation at −0.1 V.  相似文献   

9.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

10.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

11.
The electrochemical formation of magnesium nitride (Mg3N2) films in LiCl-KCl containing Li3N at 723 K was investigated. From a thermodynamic point of view, a potential-pN3− diagram was constructed for the Mg-N system in an analogous fashion to Pourbaix diagrams for aqueous solutions. As a result, the thermodynamically stable region of Mg3N2 in LiCl-KCl-Li3N was identified. XRD analysis revealed that Mg3N2 film was obtained by potentiostatic electrolysis of a magnesium electrode between 0.4 and 0.8 V (versus Li+/Li), and the structure of obtained Mg3N2 was anti-bixbyite (a = 1.001 nm). Reflectance measurements clarified that assuming direct transition, the bandgap energy was 3.15 eV and assuming indirect transition, the bandgap energy was 2.85 eV.  相似文献   

12.
Li4AlxTi5−xFyO12−y compounds were prepared by a solid-state reaction method. Phase analyses demonstrated that both Al3+ and F ions entered the structure of spinel-type Li4Ti5O12. Charge-discharge cycling results at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.5 and 0.5 V showed that the Al3+ and F substitutions improved the first total discharge capacity of Li4Ti5O12. However, Al3+ substitution greatly increased the reversible capacity and cycling stability of Li4Ti5O12 while F substitution decreased its reversible capacity and cycling stability slightly. The electrochemical performance of the Al3+-F-co-substituted specimen was better than the F-substituted one but worse than the Al3+-substituted one.  相似文献   

13.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

14.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

15.
Aziz Ya?an 《Electrochimica acta》2006,51(14):2949-2955
Poly(N-ethylaniline) (PNEA) coatings on the mild steel electrode were synthesized by electrochemical oxidation of N-ethylaniline using aqueous oxalic acid solutions as reaction medium. Electrodeposition was carried out by potentiodynamic, potentiostatic and galvanostatic synthesis techniques. Smooth, adhesive and thick PNEA coatings on mild steel could be electrosynthesized during sequential scanning of the potential region between −0.5 and 1.4 V versus SCE, with scan rate of 20 mV s−1. The electrodeposited coatings were characterized by cyclic voltammetry, FT-IR and UV-vis techniques. Corrosion behavior of PNEA coated steels was investigated by linear anodic potentiodynamic polarization technique and Tafel test. Anodic potentiodynamic polarization results showed that electrodissolution current value of PNEA coated steel decreased about 90% compared to that of the uncoated steel in 0.5 M H2SO4 aqueous solution. Tafel plots showed also strong decrease of corrosion current for the PNEA coated electrode compared to the uncoated steel electrode in 3% NaCl as corrosive medium.  相似文献   

16.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

17.
Amorphous LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 180 °C. The as-deposited LiCoO2 thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO18-Li (CF3SO2)2N/LATSP/LiCoO2/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO2 thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.  相似文献   

18.
The physical and chemical properties of chromium chlorides have been studied in fused NaCl-2CsCl eutectic at the temperature range 843-1008 K using an electrochemical cell containing a platinum-oxygen electrode with solid electrolyte membrane, which was used as pO2− indicator electrode. The concentration of oxygen ions in the solution was modifying by dropping the calculated amount of BaO. Titration of Cr3+ chlorocomplex by O2− ions demonstrated the precipitation of CrOCl and Cr2O3. The solubility constants of these compounds were calculated. E-pO2− and three-dimensional E-pO2−-T type diagrams, which summarized the properties of chromium species in the melt, were determined.  相似文献   

19.
A series of cathode materials for lithium ion batteries with the formula LiV3−xNixO8 (x = 0.000, 0.025, 0.050 and 0.100) have been synthesized by a novel low-temperature solid-state method. The synthesized cathode materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), discharge-charge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). These results indicate that LiV2.95Ni0.050O8 shows much better electrochemical performances than LiV3O8. This is due to better electrochemical reversibility and lower particle-to-particle resistance after Ni2+ doping.  相似文献   

20.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号