首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wencui Li  G. Reichenauer  J. Fricke 《Carbon》2002,40(15):157-2959
The objective of the present paper is to demonstrate the possibility to synthesize mixed carbon aerogels (denoted CmRF) from cresol (Cm), resorcinol (R) and formaldehyde (F), as an alternative economic route to the classical RF synthesis. These porous carbon aerogels can be used as electrode materials for supercapacitors with a high volume-specific capacitance. Organic precursor gels were synthesized via polycondensation of a mixture of resorcinol and cresol with formaldehyde in an aqueous alkaline (NaOH) solution. After gelation and aging the solvent was removed via drying at ambient pressure to produce organic aerogels. Upon pyrolysis of the organic aerogels at 1173 K, monolithic carbon aerogels can be obtained. By controlling the catalyst (Cat) molar ratio (Cm+R/Cat) in the range 200–500, up to 70% of the resorcinol can be replaced with the cheap cresol. The resulting homogeneous organic aerogels exhibit a drying shrinkage below 15% (linear). The shrinkage and mass loss upon pyrolysis of the mixed aerogels increase with increasing cresol content. Nitrogen adsorption at 77 K was employed to characterize the microstructure of the carbon aerogels. The data show that the porous structure of mixed carbon aerogels is similar to that of RF carbon aerogels. Cyclic voltammetry measurements show that the as-prepared CmRF carbon aerogels exhibit a high volume-specific capacitance of up to 77 F/cm3.  相似文献   

2.
The polyamide (PA) aerogels with good-formability via a sol–gel technology were facilely fabricated by using melamine and aroyl chloride followed by CO2 supercritical drying. The synthesis procedure was straightforward and simple, relying on no nitrogen-based protective atmosphere. The influences of aroyl chloride monomer on the gelation time and aerogel structure were discussed. The structural properties of PA aerogels were characterized by the scanning electron microscopy (SEM) and Brunauer–Emmett–Teller methods (BET). The results indicated that the PA aerogels had a typical three-dimensional porous structure. The PA aerogels exhibited well multifunctional properties, such as flame resistance, thermal insulation, dielectric characteristics and mechanical properties. Due to well multifunctional properties, the PA aerogels had potential for the use in construction and building materials.  相似文献   

3.
Carbon aerogels were prepared by polycondensation of resorcinol with formaldehyde in ambient conditions. The effect of resorcinol-to-catalyst ratio (R/C ratio) on volume shrinkage, BET surface area, and electrochemical property was investigated by changing R/C ratio from 50 to 2000. Carbon aerogel prepared at R/C ratio of 500 showed less than 2% of volume shrinkage and the highest BET surface area (706 m2/g). Specific capacitance of carbon aerogel prepared at R/C ratio of 500 was found to be 81 F/g in 1M H2SO4 electrolyte. Cobalt-doped carbon aerogels were then prepared by an impregnation method with a variation of cobalt content, and their performance was investigated. Among the samples prepared, 7 wt% cobalt-doped carbon aerogel showed the highest capacitance (100 F/g) and the most stable cyclability. The enhanced capacitance of cobalt-doped carbon aerogel was attributed to the faradaic redox reactions of cobalt oxide.  相似文献   

4.
《Ceramics International》2019,45(9):11368-11374
The monolithic silicon carbide (SiC) aerogels were converted from catechol-formaldehyde/silicon composite (CF/SiO2) aerogels through carbothermal reduction and calcination. In the process of preparing the CF/SiO2 aerogel, a new method was proposed to produce more silicon carbide and enhanced the mechanical properties of the SiC aerogel. This method was realized by adding an alkaline silica sol as supplemental silicon source. The principle process of CF/SiO2 aerogels converting to SiC aerogels was discussed based on experiment and results analysis, while the microstructure, mechanical properties, and thermal properties of the prepared SiC aerogels were investigated. The results show that the as-synthesized SiC aerogels consist of β-SiC and a small amount of α-SiC nanocrystalline. It possessed a mesoporous structure and a low thermal conductivity 0.049 W/(m∙K), a relatively high compressive strength 1.32 MPa, and a relatively high specific surface area 162 m2/g. Due to their outstanding thermal and mechanical properties, the prepared SiC aerogels present potential applications in thermal insulation field, such as space shuttles and aerospace carrier thermal protection materials.  相似文献   

5.
Resorcinol–formaldehyde/silica composite (RF/SiO2) aerogels were synthesized using sol–gel process followed by supercritical CO2 drying. Monolithic carbon/silicon carbide composite (C/SiC) aerogels were formed from RF/SiO2 aerogels after carbothermal reduction. X-ray diffraction and transmission electron microscopy demonstrate that β-SiC was obtained after carbothermal reduction. Scanning electron microscopy and nitrogen adsorption/desorption reveal that the as-prepared C/SiC aerogels are typical mesoporous materials. The pore structural properties were measured by nitrogen adsorption/desorption analysis. The resulting C/SiC aerogels possess a BET surface area of 564 m2/g, a porosity of 95.1 % and a pore volume of 2.59 cm3/g. The mass fraction of SiC in C/SiC aerogels is 31 %.  相似文献   

6.
Stable carbon nanotube (CNT) aerogels were produced by forming a three-dimensional assembly of CNTs in solution to create a stable gel using a chemical cross-linker, followed by a CO2 supercritical drying. Thermal annealing of these aerogels in air can significantly improve their electrical and mechanical properties, and increase their surface area and porosity by re-opening the originally blocked micropores and small mesopores in the as-prepared CNT aerogels. Thermally annealed CNT aerogels are mechanically stable and stiff, highly porous (∼99%), and exhibit excellent electrical conductivity (∼1–2 S/cm) and large specific surface area (∼590–680 m2/g).  相似文献   

7.
Organic aerogels were derived from acetic acid catalysed resorcinol and furfural and then dried directly in supercritical carbon dioxide without the use of a solvent exchange process. These aerogels were further carbonised in nitrogen and activated in CO2 in order to obtain their corresponding carbon aerogels. The carbon aerogels prepared by this method had a greater proportion of micropores in addition to a much shorter preparation time (on the order of days) than those prepared by other studies. The effect of different drying techniques on the microstructure of the wet gels was investigated by nitrogen adsorption at cryogenic liquid nitrogen temperature. Nitrogen adsorption at 77 K allowed the determination of surface areas and pore volumes, further analysed by the Dubinin-Radushkevich model and density functional theory model. The surface area and micropore volume of carbon aerogels prepared by this method increased by 19% and 12%, and accordingly, hydrogen uptake capacity was increased by 10% from 4.9 ± 0.2 wt.% to 5.4 ± 0.3 wt.% at 4.6 MPa and 77 K.  相似文献   

8.
With the addition of hexamethylenetetramine (HMTA) and alcohol as solvent, an ambient pressure drying technique was developed for the fabrication of low-density organic aerogels and related carbon aerogels. When a suitable ratio of resorcinol to HMTA (R/H ratio) and ratio of resorcinol to solvents (R/S ratio) are selected, the low-density alco-gels obtained can be dried under ambient pressure conditions without observable shrinkage. The addition of HMTA increases the size of carbon nano-particles and the pore size of the aerogels that are produced. The carbon aerogels prepared in this work have similar nano-particle structures typical of the aerogels prepared with CO2 or by the isopropanol supercritical drying technique.  相似文献   

9.
Resorcinol-formaldehyde/silica composite (RF/SiO2) gels were acid-catalyzed formed in one pot at 27 °C within 60 min, and then dried to aerogels with supercritical fluid CO2. After carbonization in nitrogen atmosphere and a magnesiothermic reaction at 700 °C, RF/SiO2 aerogels were successfully converted to monolithic mesoporous silicon carbide (SiC aerogels). The starting RF/SiO2 aerogels had an interpenetrating organic/inorganic network and the resulting SiC products preserved monolithic mesoporous morphology similar to the original templates. The as-synthesized SiC aerogels consisted of nanocrystalline β-SiC, possessed a BET surface area of 232 m2/g and showed sufficient mesoporosity. They had a direct band gap of about 3.2 eV (less than that of bulk β-SiC) and showed photoluminescence at room temperature. The mechanisms about the formation of RF/SiO2 gels and the conversion to SiC aerogels were discussed. Potentially, the reported method can be used to convert many metal or semimetal oxide/carbon composite aerogels to carbide aerogels at relatively low temperature for many catalytic, electronic, photonic and thermal applications.  相似文献   

10.
Phloroglucinol-Formaldehyde (PF) organic aerogels were prepared from alcoholic sol-gel polycondensation of phloroglucinol with formaldehyde using KOH as base catalyst and followed by supercritical drying with carbon dioxide. Subsequent pyrolysis of PF organic aerogel under He flow produced carbon aerogels. Textural properties of PF organic and carbon aerogels were obtained by nitrogen adsorption-desorption, and their specific capacitances were measured by cyclic voltammetry. The resultant PF carbon aerogels were mostly mesoporous material with high surface area. The nanoporous structure and electrochemical behavior of PF carbon aerogels could be controlled by the molar ratio of phloroglucinol to catalyst (P/C) and carbonization conditions. PF carbon aerogels exhibited the highest surface area in excess of 1,200 m2/g and specific capacitance up to 250 F/g in comparison to other carbons.  相似文献   

11.
《Ceramics International》2017,43(15):12196-12204
This article describes the morphological, structural, and luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels synthesized by the sol-gel method with Eu concentrations from 2.5 mol% to 30 mol%. XRD measurements indicated that both the aerogels and glassy aerogels had a monoclinic phase, but the crystallinity in the glassy aerogels was lower due to the presence of SiO2. SEM images reveal that a three-dimensional porous network was formed in the aerogels due to the interconnection of coalesced Y2O3:Eu3+ nanoparticles. The 3D porous network was also observed in the glassy aerogels, coated with a silica shell. In both the aerogels and glassy aerogels, the size of the agglomerates decreased as the europium concentration increased. This, in turn, increased the average size of the macropores that formed their 3D network. Furthermore, the luminescent properties of the aerogels and glassy aerogels were studied under UV excitation, and it was observed that their red emission intensity increased continuously as the Eu3+ concentration increased. The luminescence of the aerogels was on average 50% higher than that of the glassy aerogels. Hence, our results indicate that porous and luminescent aerogels with and without silica are adequate for applications in sensing and catalysis.  相似文献   

12.
The novel polyhedral oligomeric silsesquioxane (POSS)–titania aerogels which contain different contents of titania were successfully prepared by the sol–gel process and subsequently supercritical drying with carbon dioxide. All the aerogels are monolithic and the densities of those aerogels are low. The FTIR spectra of the aerogels showed the resulting POSS–TiO2 composite aerogels had homogeneous Si–O–Ti bonds. The microstructure, surface composition and thermal stability were measured by FESEM, XPS and TGA. With the increasing of titania contents, the aggregated particles of the aerogels in the microstructure got larger and larger. The texture of the aerogels was measured by XRD and nitrogen adsorption/desorption and showed that they were amorphous and had high surface area (>500 m2/g).  相似文献   

13.
Ceramic aerogels possess intriguing thermophysical properties which make them excellent candidates for high temperature thermal insulators. However, their properties can degrade at high temperature because of crystallization phenomena or because of densification (causing a sensible reduction of their specific surface area and porosity).The polymer derived ceramic (PDC) route is a relatively new way of developing ceramic aerogels. Several aspects influence the properties of the final product when dealing with preceramic polymers, among them their chemical composition and molecular architecture.In this work, we investigated the possibility of producing aerogels belonging to the SiCN system from polysilazanes mixtures, namely perhydropolysilazane (PHPS) and a methyl/vinyl-containing polysilazane, namely Durazane 1800®, thus changing the C/Si ratio of the amorphous pyrolyzed products. It is shown that the chemical composition of the ceramic aerogel affects the main properties of the porous materials, such as thermal stability and specific surface area (SSA). Results show that the presence of carbon in the aerogels inhibits crystallization of Si3N4 up to 1600 °C in N2 and allows to maintain a SSA of ~90 m2/g up to this temperature.  相似文献   

14.
Adsorption process is a cost-effective way to the dye removal and CO2 capture. Improvements of the adsorption performance and conformance to the practical application conditions are necessary steps to approach practicality. Herein, hierarchical porous carbon-doped boron nitride (BCN) aerogels with amino modification were synthesized for the first time by freeze drying and carbothermal reduction method. As-prepared BCN aerogels exhibited superior adsorption performance for CO2 and dyes. Compared with BN aerogel, notwithstanding the lower surface area, the as-prepared BCN aerogel exhibited 6-fold-enhanced CO2 capture and higher dyes adsorption capacity, delivering a more than 150 times adsorption rate with methylene blue (MB) as the adsorbent. The reinforced adsorption properties were demonstrated to be primarily from the synergistic effect of carbon doping and amino decoration on the obviously improved adsorption energy, hydrophilicity and mesopore volume, accelerating the kinetics of dye and gas molecules diffusion. This work provides a new way on the design of high-efficiency absorbent materials.  相似文献   

15.
In this article, activated carbon aerogels (ACAs) were prepared by CO2 activation. Their pore structures were investigated by N2 adsorption–desorption analysis. ACAs have excellent microporosity (e.g. 0.36 cm3/g) and mesoporosity (e.g. 1.72 cm3/g). Adsorption characteristics of phenol, methylene blue, I2, and VB12 on ACAs in the liquid phase were studied by static adsorption experiments. Results showed that CO2 activation process is an effective way to introduce micropores in carbon aerogels, which is enhanced with the increase of activation time. As a result, the adsorption capacities of the four mentioned adsorbates on ACAs were improved gradually with the increase of activation time. However, mesopore volume is also a factor on improving adsorption properties for the relatively giant molecules methylene blue and VB12. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   

17.
Xinhong Chang  Xiuling Jiao 《Polymer》2010,51(16):3801-206
Environmentally green carbon aerogels have been prepared as adsorbents for dye-containing wastewater. The aerogels were prepared by carbonization of starch aerogels synthesized from soluble starch through a sol-gel process followed by drying at ambient pressure. The Brunauer-Emmett-Teller (BET) surface areas and pore size distribution were measured by N2 adsorption/desorption, and the surface zeta-potential and microstructure of carbon aerogels were characterized using a scanning electron microscope (SEM) and zeta-potential analyzer. SEM images indicate that the carbon aerogels consist of flakes with side length of 60-120 μm and thickness of 3-4 μm. The flakes are irregular in shape and composed of spherical carbon nanoparticles of 10-30 nm. The carbon aerogels have both microporous and mesoporous structures and exhibit high specific surface areas, the highest value is 1571 m2/g. The mean diameter of the micropores is 0.89 nm and that of the mesopores is 2-10 nm. At pH = 10, the carbon aerogels have a zeta-potential of −40 mV and exhibit high adsorption capacities for cationic dyes, such as crystal violet (CV), methyl violet (MV) and methylene blue (MB), from aqueous solution. The largest adsorption capacities for CV, MV and MB are 1515, 1423 and 1181 mg/g, respectively.  相似文献   

18.
The objective of the present work is to improve the surface area of aerogel via supercritical carbon dioxide (sc · CO2) treatment and thus to obtain the chitosan derivative. The resulting mesoporous material exhibits the typical characteristics of aerogels such as high porosity and high surface area. The aerogels were characterized using FTIR, SEM, TEM, and thermal analysis. The specific surface areas and porosities of aerogels were determined using N2 adsorption. The antibacterial assays were done using E. coli. The prepared chitosan aerogels show important properties such as biocompatibility, non-toxicity, and antibacterial activity, making them suitable for biomedical applications.  相似文献   

19.
Considering the importance of the highly porous, low density, transparent and nanostructured hydrophobic silica aerogels in the scientific and industrial applications, the experiments have been carried out to prepare the low density silica aerogels using the 1.12 specific gravity water glass (sodium silicate, Na2SiO3) precursor, ammonium hydroxide (NH4OH) catalyst, trimethylchlorosilane (TMCS) silylating agent, various first exchanging protic solvents and hexane as a second exchanging aprotic solvent. The first exchanging solvents used were: methanol, ethanol, propanol, isopropanol, butanol, isobutanol and hexanol. The molar ratio of the Na2SiO3:H2O:NH4OH:TMCS was kept constant at 1:56:0.02:0.4 respectively. The ambient pressure dried method was used for the preparation of hydrophobic silica aerogels. The effect of the exchanging protic solvents on the physical properties of the aerogels such as density, % of volume shrinkage, % of porosity, % of optical transmission, thermal conductivity, thermal stability and contact angle of the aerogels with water, were studied. FTIR studies were carried out to confirm the silylation of the aerogel samples. It was found that the exchanging protic solvents have profound effect on the physical and hydrophobic properties of the aerogels. Low density (0.07 g/cm3), high porosity (96.6 %), low thermal conductivity (0.091 W/mK), high contact angle (166°) silica aerogels could be prepared by using the isopropanol first exchanging solvent followed by the hexane as the second exchanging solvent along with the TMCS silylating agent with sodium silicate precursor.  相似文献   

20.
By embedding carbon nanotubes into poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT–PSS) supermolecular hydrogels in the presence of a very small amount of polyvinyl alcohol (PVA), we have presented the fabrication of ultralight conducting polymer/carbon nanotube composite aerogels with the apparent density of 0.04–0.07 g/cm3 made by supercritical CO2 drying of as-made composite hydrogel precursors. The carbon nanotubes employed here are directly applicable to pristine (MWCNTs) or acid treated (c-MWCNTs) multi-wall nanotubes. Infra-red spectroscopy is used to confirm that PVA used for stabilizing nanotubes during the synthesis of hydrogel precursors has been completely removed by solvent exchange before supercritical CO2 drying. The morphology and textural properties of the resultant composite aerogels are investigated by scanning electron microscopy, nitrogen adsorption/desorption, and X-ray powder diffraction tests. The thermal stability, together with electrical conductivities, of the resulting composite aerogels is revealed by the thermal gravitational analysis as well as conductivity tests. The results show that embedding of either MWCNTs or c-MWCNTs into PEDOT–PSS aerogel matrix can significantly enhance the specific surface areas (280–400 m2/g), the thermal stability and electrical conductivities (1.2–6.9 × 10−2 S/cm) of the resulting composite aerogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号