首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

2.
Free-standing films of multi-walled carbon nanotubes (MWCNTs), also known as buckypapers, have been fabricated by a two-step process using electrophoretic deposition (EPD). Films of the multi-walled carbon nanotubes were cast onto stainless steel electrodes from aqueous suspensions by EPD. Using a facile mechanical cleavage technique, the films were liberated from their underlying electrodes to yield the buckypapers. We investigated the films’ thickness, morphology, and surface topology using, respectively, profilometry, scanning electron microscopy, and atomic force microscopy. Mechanical characterization of the buckypapers revealed the average tensile strength and Young’s modulus to be 14.5 MPa and 3.3 GPa, respectively. This fabrication approach provides a cost effective, rapid, and reproducible method to make films of MWCNTs with a range of thicknesses and macroscopic lateral dimensions.  相似文献   

3.
In the present work, the influence of several metals (Co, Ru, Pd, Os, Pt, Cu, Pb), deposited on a carbon paste electrode, towards silver electrodeposition was tested. First, adequate conditions for the electrodeposition of metals on the electrode were found. Then, the cyclic voltammograms registered (silver deposition curves and analytical signals) showed that Co, Cu, Pt and Pd were able to accelerate silver electrodeposition. Finally, a valid methodology for the detection of cisplatin was established. It is based on the deposition of silver on a Pt (from cisplatin) modified electrode and the analytical signal corresponds to the anodic stripping of the deposited silver. A limit of detection of 3.2 × 10−9 mol dm−3 (1 ng cm−3) cisplatin was obtained.  相似文献   

4.
A novel route (electrodeposition) for the fabrication of porous ZnO nanofilms attached multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCEs) was proposed. The morphological characterization of ZnO/MWCNT films was examined by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The performances of the ZnO/MWCNTs/GCE were characterized with cyclic voltammetry (CV), Nyquist plot (EIS) and typical amperometric response (i-t). The potential utility of electrodes constructed was demonstrated by applying them to the analytical determination of hydroxylamine concentration. An optimized limit of detection of 0.12 μM was obtained at a signal-to-noise ratio of 3 and with a fast response time (within 3 s). Additionally, the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.4 to 1.9 × 104 μM and higher sensitivity. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.  相似文献   

5.
Recently electrodes for direct methanol fuel cell (DMFC) have been developed for getting high fuel cell performances by controlling composition of catalysts and sulfonated polymers, developing catalyst particles, modifying carbon supports, etc. The electrodes in DMFCs are porous layers, which are composed of catalyst, which is black or carbon supported, and sulfonated polymers in a blended form. In the present study, carbon support for catalysts was functionalized to play dual roles of a mass transport and a catalyst support. The functionalized carbon support was characterized and compared with pristine one by thermal and spectroscopic analysis, and loading of platinum (Pt) catalysts on modified support was performed by gas reduction. The electrodes with Pt on functionalized carbon support were fabricated, though the conventional electrodes were prepared with sulfonated polymer and Pt catalysts. Membrane electrode assembly with Pt catalyst on functionalized support showed a higher DMFC performance of 30 mW cm−2 at 50 °C without using additional sulfonated polymer. Integration of electrode components in one body has another advantage of easier and simpler process in preparing electrodes for DMFCs. Improved DMFC performance of the electrode containing functionalized carbon was be attributed to a better mass transport which maximize the catalytic activities.  相似文献   

6.
Zhan Lin 《Electrochimica acta》2009,54(27):7042-9377
Pt/carbon composite nanofibers were prepared by electrodepositing Pt nanoparticles directly onto electrospun carbon nanofibers. The morphology and size of Pt nanoparticles were controlled by the electrodeposition time. The resulting Pt/carbon composite nanofibers were characterized by running cyclic voltammograms in 0.20 M H2SO4 and 5.0 mM K4[Fe(CN)6] + 0.10 M KCl solutions. The electrocatalytic activities of Pt/carbon composite nanofibers were measured by the oxidation of methanol. Results show that Pt/carbon composite nanofibers possess the properties of high active surface area and fast electron transfer rate, which lead to a good performance towards the electrocatalytic oxidation of methanol. It is also found that the Pt/carbon nanofiber electrode with a Pt loading of 0.170 mg cm−2 has the highest activity.  相似文献   

7.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   

8.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

9.
One promising preparative method that offers the potential for improved platinum (Pt) dispersion of electrocatalysts is electroless deposition (ED). In this study, the effects of multiwalled carbon nanotubes (MWCNTs) pretreatment and synthesis procedure on properties of the four catalysts, synthesized by ED method, have been considered. The results of energy-dispersive X-ray spectroscopy (EDS), X-ray dot-mapping, X-ray fluorescence (XRF) and cyclic voltammetry (CV) analyses showed that using palladium (Pd) precursor during two-step sensitization-activation coating procedure gives uniform Pt particles distribution on MWCNTs with low aggregation and high specific surface area (∼80 m2 g−1). In addition, to investigate the performance of the synthesized catalysts in experimental fuel cell system, thin-film method was used to fabricate the membrane electrode assemblies (MEAs). Obtaining the polarization curves for the fabricated MEAs (Pt loading ∼0.4 mg cm−2) and a commercial MEA (ElectroChem, Pt loading ∼1 mg cm−2) demonstrated that the catalyst prepared by two-step sensitization-activation coating procedure possesses a good performance despite of its lower Pt content.  相似文献   

10.
The rotating disk electrode (RDE) is a useful technique for precise determination of exchange current density (j0) in electrochemistry. For the study of powder catalysts, a common practice is to apply the powder onto an inert disk substrate (such as glassy carbon). However, this approach in its usual version will lead to wrong results for the exchange current density of hydrogen electrode reactions at carbon-supported Pt nanoparticles (Pt/C) because of the poor utilization of the loaded Pt nanoparticles. Our new approach is to dilute the Pt/C powder with a large amount of pristine carbon support to make the catalyst layer. In this way, all the catalyst particles in the catalyst layer have nearly the same and much enhanced mass transport so that rational exchange current density can be obtained. Using the new approach, the current density for hydrogen electrode reactions at Pt/C in 0.1 M perchloric acid at 25 °C is found to be 27.2 ± 3.5 mA/cm2 with an apparent activation energy 43 kJ/mol. These results are in agreement with the j0 estimation based on real fuel cell experiments.  相似文献   

11.
Wenzhen Li  Paul Larsen 《Carbon》2010,48(4):995-11358
Inexpensive stacked-cup carbon nanofibers (SC-CNFs) supported Pt nanoparticles with a loading from 5 to 30 wt.% were prepared through a modified ethylene glycol method. XRD and TEM characterizations show that the average Pt particle sizes increase with increasing metal loading, and they can be controlled <5 nm with a uniform dispersion. A self-developed filtration process was employed to fabricate Pt/SC-CNFs film-based membrane electrode assembly (MEA), and the catalyst transfer efficiency can reach nearly 100% using a super-hydrophobic polycarbonate filter. The thickness of catalyst layer can be accurately controlled through altering Pt loadings of the catalyst and electrode, this is in good agreement with our theoretical calculation. For Pt/SC-CNFs-based-MEAs, Pt cathode loading was found more critical than Pt anode loading on proton exchange membrane fuel cell (PEMFC) performance. The Pt/SC-CNFs-based MEA with an optimized 50 wt.% Nafion content demonstrates higher PEMFC performance than the carbon black-based MEA with an optimized 30 wt.% Nafion content. SC-CNFs possess much larger length-to-diameter ratio than carbon black particles, it makes Pt/SC-CNFs more easily form continuously conductive networks in the Nafion matrix than carbon black. Therefore, the Pt/SC-CNFs-based MEA demonstrates higher Pt utilization than carbon black-based MEA, which implies possible reduction in Pt loading of MEA.  相似文献   

12.
Yanhui Xu 《Electrochimica acta》2007,52(16):5140-5149
Pt nano-clusters (nano-Pt) have been selectively attached to the open ends and defect sites of mildly oxidized multi-wall carbon nanotubes (MWCNTs) on a glassy carbon electrode (GCE) by a cyclic voltammetry (CV) electrodeposition method. The nano-Pt functionalized MWCNTs were characterized by XPS, XRD, FE-SEM and electrochemical techniques. The catalytic activity of the nano-Pt functionalized MWCNTs were tested by an oxygen reduction reaction (ORR) and a methanol oxidation reaction (MOR). Taking the ORR as an example, we found that the electrocatalytic activity of the nano-Pt functionalized MWCNTs can be well tuned by varying the cycle number and the PtCl62− concentration of the deposition conditions. The average size of the nano-Pt was 123 nm, and it was constituted of nano-crystallite of an average size of 10.8 nm. Though the large nano-Pt particles (100-150 nm) were only attached on the open ends and defect sites of the MWCNTs, which were very different from the highly dispersed small Pt nanoparticles (<10 nm) on carbon nanotubes reported by other research groups. In our method, excellent electrocatalytic activity of the nano-Pt functionalized MWCNTs for ORR and MOR can be obtained. The mechanisms for nano-Pt deposition are proposed.  相似文献   

13.
Polyacrylonitrile nanofibrous mats coated with continuous thin gold films (Au-PAN) have been fabricated by combining the electrospinning and electroless plating techniques. The Pt particles are electrodeposited on the Au-PAN fibers surface by multi-cycle CV method, and the Au-PAN decorated with Pt (Pt/Au-PAN) shows higher activity toward methanol electro-oxidation. The catalytic peak current for methanol oxidation on the optimum Pt/Au-PAN electrode can reach about 450 mA mg−1 Pt which is much larger than the catalytic peak current for methanol oxidation (118.4 mA mg−1 Pt) on the electrode prepared by loading commercial Pt/C on Au-PAN (Pt/C/Au-PAN). Further experiments reveal that the Pt/Au-PAN electrodes exhibit better stability and smaller charge transfer resistance than Pt/C/Au-PAN electrodes, which indicates that the Au-PAN may be developed as supporting material for catalyst. The microscopy images of the electrodes show that the Pt particles deposited on Au-PAN conglomerate into larger particles, and that the Pt/C catalyst loaded on the Au-PAN also exhibits conglomeration after stability test. The hydrogen adsorption-desorption experiments indicate that the electrochemical surface area of the Pt particles for the both kinds of electrodes has decreased after stability test.  相似文献   

14.
The kinetics of O2 reduction on novel electrocatalyst materials deposited on carbon substrates were studied in 0.5 M H2SO4 and in 0.1 M NaOH solutions using the rotating disk electrode (RDE) technique. Pt nanoparticles (PtNP) supported on single-walled (PtNP/SWCNT) and multi-walled carbon nanotubes (PtNP/MWCNT) were prepared using two different synthetic routes. Before use, the CNTs were cleaned to minimize the presence of metal impurities coming from the catalyst used in the synthesis of this material, which can interfere in the electrochemical response of the supported Pt nanoparticles. The composite catalyst samples were characterised by transmission electron microscopy (TEM) showing a good dispersion of the particles at the surface of the carbon support and an average Pt particle size of 2.4 ± 0.7 nm in the case of Pt/CNTs prepared in the presence of citrate and of 3.8 ± 1.1 nm for Pt/CNTs prepared in microemulsion. The values of specific activity (SA) and other kinetic parameters were determined from the Tafel plots taking into account the real electroactive area of each electrode. The electrodes exhibited a relatively high electrocatalytic activity for the four-electron oxygen reduction reaction to water.  相似文献   

15.
Pt electrodes were prepared by direct and pulse current electrodeposition for use as counter electrodes in dye-sensitized solar cells. Scanning electron microscope and transmission electron microscope images confirmed the formation of uniform Pt nanoclusters of ∼40 nm composed of 3 nm nanoparticles, when the pulse current electrodeposition method was used, as opposed to the dendritic growth of Pt by the results from direct current electrodeposition. By applying pulse electrodeposited Pt which has a 1.86 times higher surface area compared to direct current electrodeposited Pt, short-circuit current and conversion efficiency were increased from 10.34 to 14.11 mA/cm2 and from 3.68 to 5.03%, respectively. In addition, a flexible solar cell with a pulse current electrodeposited Pt counter electrode with a conversion efficiency of 0.86% was demonstrated.  相似文献   

16.
A new amperometric glucose biosensor has been developed based on platinum (Pt) nanoparticles/polymerized ionic liquid-carbon nanotubes (CNTs) nanocomposites (PtNPs/PIL-CNTs). The CNTs was functionalized with polymerized ionic liquid (PIL) through directly polymerization of the ionic liquid, 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM]BF4), on carbon nanotubes and then used as the support for the highly dispersed Pt nanoparticles. The electrochemical performance of the PtNPs/PIL-CNTs modified glassy carbon (PtNPs/PIL-CNTs/GC) electrode has been investigated by typical electrochemical methods. The PtNPs/PIL-CNTs/GC electrode shows high electrocatalytic activity towards the oxidation of hydrogen peroxide. Taking glucose oxidase (GOD) as the model, the resulting amperometric glucose biosensor shows good analytical characteristics, such as a high sensitivity (28.28 μA mM−1 cm−2), wide linear range (up to 12 mM) and low detection limit (10 μM).  相似文献   

17.
Membrane electrode assemblies (MEA) were prepared using PtRu black and 60 wt.% carbon-supported platinum (Pt/C) as their anode and cathode catalysts, respectively. The cathode catalyst layers were fabricated using various amounts of Pt (0.5 mg cm−2, 1.0 mg cm−2, 2.0 mg cm−2, and 3.0 mg cm−2). To study the effect of carbon support on performance, a MEA in which Pt black was used as the cathode catalyst was fabricated. In addition, the effect of methanol crossover on the Pt/C on the cathode side of a direct methanol fuel cell (DMFC) was investigated. The performance of the single cell that used Pt/C as the cathode catalyst was higher than single cell that used Pt black and this result was pronounced when highly concentrated methanol (above 2.0 M) was used as the fuel.  相似文献   

18.
The multiwalled carbon nanotube (MWNT) array was fabricated by chemical vapor deposition (CVD) in the template of porous alumina from the carbonaceous source of C2H2 in the presence of a catalyst of ferric metals. To utilize the external surface other than the inner surface of the carbon nanotubes, 1 mol/L sulfuric acid was applied to remove off the most part of AAO template on the carbon nanotube electrode. The electrochemical performances of the carbon nanotube array electrode were investigated by use of the cyclic voltammetry, galvanostatic charge/discharge and ac impedance methods for its application in supercapacitors. The specific capacitance of 365 F/g of the electrode was achieved with the discharge current density of 210 mA/g in the solution of 1 mol/L H2SO4. In addition, the carbon nanotube array electrode was found to have low equivalent series resistance (ESR) and good cycling stability.  相似文献   

19.
Pd-Co alloy has been recently proposed as a catalyst for the cathode of direct methanol fuel cells with both excellent oxygen reduction activity and methanol tolerance, hence electrodeposition of this alloy is an attractive approach for synthesizing porous metal electrodes with high methanol tolerance in direct methanol fuel cells. In this study, we electrodeposited two types of Pd-Co films onto Au substrates by applying different current density (−10 or −200 mA cm−2); and then characterized them in terms of morphology, composition, crystal structure, and catalytic activity. Pd-Co deposited at −10 mA cm−2 was smooth and possessed smaller particles (ca. 10 nm), while that at −200 mA cm−2 was dendritic (or rough) and possessed larger particles (ca. 50 nm). Both the Pd-Co alloys were found to be almost the same structure, i.e. a solid solution of ca. Pd7Co3 with Pd-skin, and also confirmed to possess comparable activity in oxygen reduction to Pt (potential difference at 1.0 μA cm−2 was 0.05 V). As for methanol tolerance, cell-voltage was not influenced by addition of 1 mol dm−3 methanol to the oxidant solution. Our approach provides fundamental technique for synthesizing Pd-Co porous metal electrodes by electrodeposition.  相似文献   

20.
The electrochemical property of platinum loaded on activated carbon nanotubes (Pt/ACNTs) was investigated by cyclic voltammograms (CVs) recorded in H2SO4 and H2SO4/CH3OH aqueous solutions, respectively. Compared to 0.0046 A/cm2 of Pt-loaded on pristine carbon nanotubes (Pt/CNTs) with a SBET of 164 m2/g and 0.0042 A/cm2 of conventional carbon black (Pt/C, Vulcan XC-72) with a SBET of ∼250 m2/g, a better electrochemical activity (a high current density of 0.0070 A/cm2 for weak-H2 adsorption/desorption) of the Pt/ACNTs with high specific surface area (SBET) of 830-960 m2/g was obtained. Furthermore, the highest current density of 0.079 A/cm2 at 0.65 V in anodic sweep was observed during the methanol oxidation. On the basis of Pt size, utility ratio, and electro-active specific surface area (EAS), the Pt/ACNTs with a high Pt-loading of 50 wt.% exhibited the best electrochemical activity. The present ACNTs may be an excellent support material for electrochemical catalyst in proton exchange membrane and direct methanol fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号