首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

2.
Cyclic voltammetry was used to investigate the electrochemical behaviour of the tungsten oxide films toward the electroreduction of BrO3, ClO2 and NO2 ions in acidic medium. The effects of the temperature, scan rate, pH, chemical composition of the electrolytic solutions, were investigated and the reduction mechanism was critically discussed.The reduction currents, evaluated in cyclic voltammetry and measured at −0.250 V versus SCE, increased linearly on increasing analyte concentration up to 20, 55 and 45 mM for nitrite, chlorite and bromate ions, respectively. The detection limits, evaluated in cyclic voltammetry, were 0.1, 0.4 and 0.7 mM for BrO3, ClO2 and NO2, respectively.The tungsten oxide film was successfully characterized as an amperometric sensor for the analytical determination of BrO3, ClO2 and NO2 ions in flowing stream. Operating under constant applied potential of −0.3 V versus Ag/AgCl the good reproducibility of the peak height and background current level during consecutive injections, indicates the absence of fouling effects and the potential applicability of the amperometric sensor for the routine analytical determination of the investigated inorganic ions. Considering the low values of the background currents (ca. 1.1 ± 0.1 μA) obtained in acidic and not deoxygenated carrier electrolyte, the tungsten sensing electrode seems to compete favourably with other common sensors for the amperometric determination of electroactive molecules under cathodic conditions.The X-ray photoelectron spectroscopy technique (XPS) was used in order to evaluate the chemical composition of the tungsten film upon electrochemical treatment in 0.1 M H2SO4 solution. Independently of the electrochemical treatment in acid solution, the tungsten surface electrode is generally composed by 50-60% of W0, 35-40% of W6+ and traces of W2+ oxide species.  相似文献   

3.
In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage (Γ) and charge transfer rate constant (ks) of Fe(III)P immobilized on MWCNTs were 7.68 × 10−9 mol cm−2 and 1.8 s−1, respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO3, IO3 and BrO3 in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 × 103, 7.4 × 103 and 4.8 × 102 M−1 s−1, respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 μM, 2 μM to 1 mM, 8.4 nA/μM, 0.6 μM, 2 μM to 0.15 mM, 11 nA/μM, and 2.5 μM, 10 μM to 4 mM and 1.5 nA/μM, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical application of the Fe(III)P-MWCNTs-modified electrode as an amperometric sensor for chlorate, iodate and bromate detections.  相似文献   

4.
Combination of multi-walled carbon nanotubes, cobalt porphyrin and tungsten oxide in the film (deposited onto glassy carbon electrode substrate) produces an electrocatalytic system capable of effective reduction of oxygen in such acid medium as 0.5 mol dm−3 H2SO4.Co-existence of cobalt porphyrin and tungsten oxide, together with dispersed carbon nanotubes, leads to the enhancement effect evident from some positive shift in the oxygen reduction voltammetric potential and the significant increase of voltammetric currents (relative to those characteristic of the system free of carbon nanotubes and WO3). The multi-component electrocatalytic film has also exhibited relatively higher activity towards reduction of hydrogen peroxide. It is reasonable to expect that the reduction of oxygen is initiated at the cobalt porphyrin redox centers, and the undesirable hydrogen peroxide intermediate is further reduced at the tungsten oxide support. An important function of carbon nanotubes is to improve transport of electrons within the electrocatalytic multi-component film.  相似文献   

5.
Composite film of polyaniline (PANI) and tungsten oxide (WO3) was electrodeposited by cyclic voltammetric technique from a solution of aniline and tungstic acid. The obtained WO3/PANI film displayed a significant enhancement of electrocatalytic activity for iodate reduction and a better stability than that of pure WO3 and PANI films. Result of amperometric experiment revealed a good linear relationship with concentration of IO3 from 20 to 500 μM, with a high sensitivity of 0.54 μA/μM and a detection limit of 2.7 μM for the determination of iodate. This composite film was also successfully applied in determination of iodate in commercial table salt.  相似文献   

6.
In this paper, we studied the development of a selective lithium ion sensor constituted of a carbon paste electrode modified (CPEM) with an aluminum-doped spinel-type manganese oxide (Li1.05Al0.02Mn1.98O4) for investigating the influence of a doping ion in the sensor response. Experimental parameters, such as influence of the lithium concentration in the activation of the sensor by cyclic voltammetry, pH of the carrier solution and selectivity for Li+ against other alkali and alkaline-earth ions were investigated. The sensor response to lithium ions was linear in the concentration range 5.62 × 10−5 to 1.62 × 10−3 mol L−1 with a slope 100.1 mV/decade over a wide pH 10 (Tris buffer) and detection limit of 2.75 × 10−5 mol L−1, without interference of other alkali and alkaline-earth metals, demonstrating that the Al3+ doping increases the structure stability and improves the potentiometric response and sensitivity of the sensor. The super-Nernstian response of the sensor in pH 10 can be explained by mixed potential arising from two equilibria (redox and ion-exchange) in the spinel-type manganese oxide.  相似文献   

7.
A robust and effective composite film combined the benefits of room temperature ionic liquid (RTIL), chitosan (Chi) and multi-wall carbon nanotubes (MWNTs) was prepared. Cytochrome c (Cyt c) was successfully immobilized on glassy carbon electrode (GCE) surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. A pair of well-defined and quasi-reversible redox peaks of Cyt c was obtained in 0.1 mol L−1 pH 7.0 phosphate buffer solution (PBS), indicating the Chi-RTIL-MWNTs film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0 × 10−6 to 2.6 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 (S/N = 3). The apparent Michaelis-Menten constant (Km) was calculated to be 0.45 ± 0.02 mmol L−1. Moreover, the modified electrode displayed a rapid response (5 s) to H2O2, and possessed good stability and reproducibility. Based on the composite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

8.
Hao Yu 《Electrochimica acta》2007,52(13):4403-4410
The gallium hexacyanoferrate (GaHCF) was synthesized chemically and characterized by FTIR technique. Its electrochemical behavior was carefully investigated by fabricating a GaHCF modified carbon paste electrode in various supporting electrolyte. The experimental results showed that in KNO3, K2SO4, KCl and other supporting electrolyte, GaHCF yielded one pair of ill-defined redox waves with a formal potential of 0.9 V (versus SCE). In 0.050 mol L−1 phosphate buffer solution (PBS, pH 6.8), however, GaHCF yielded one pair of well-defined redox peaks with a formal potential of 0.222 V. Furthermore, this modified electrode exhibited a high electrocatalytic activity toward the reduction of H2O2 in pH 6.8 PBS, with over-potential dramatically lower than that of on the bare carbon paste electrode. Amperometry was used for the determination of H2O2, under the optimal conditions, a linear dependence of the catalytic current versus H2O2 concentration was obtained in the range of 4.9 × 10−6 to 4.0 × 10−4 mol L−1 with a detection limit of 1 × 10−6 mol L−1 when the signal-to-noise ratio was 3, and a sensitivity of 27.9 μA mM−1 (correlation coefficient of 0.997). Chronoamperometry was used to conveniently determine the diffusion coefficient of H2O2 in the solution.  相似文献   

9.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

10.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

11.
The electrosynthesis of polyaniline on the bare aluminum and pre-treated aluminum surface achieved in aqueous H2PtCl6 solution saturated with NaF for few seconds is described. The effect of some factors such as pre-treatment time, aniline and sulfuric acid concentrations on the electropolymerization process was investigated and optimum conditions were obtained. The stability of polyaniline film on the pre-treated aluminum electrode (Al-Pt) was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1-0.7 V, the first-order degradation rate constant, k, of polyaniline film varies between 1 × 10−6 and 2 × 10−5 s−1, and a relatively low slope (i.e. 2.1) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the polyaniline-deposited Al electrode (Al/PANI) and polyaniline-deposited Al-Pt electrode (Al-Pt/PANI) in 0.1 H2SO4 solutions is described. The electrocatalytic activity of the Al-Pt/PANI electrode against para-benzoquinone/hydroquinone (Q/H2Q) and Fe(CN)63−/Fe(CN)64− redox systems was investigated and the obtained results are compared with those obtained on Al/PANI and bulk Pt electrodes.  相似文献   

12.
The synthesis of polyaniline/platinum composites (PANI/Pt) has been achieved using both chemical and electrochemical methods. The direct chemical synthesis of PANI/Pt proceeds through the oxidation of aniline by PtCl62− in the absence of a secondary oxidant. SEM images of these samples indicate that the Pt particles are on the order of ∼1 μm for the chemically prepared composite. Electrochemical PANI/Pt synthesis is initiated by the uptake and reduction of PtCl62− into an a priori electrochemically deposited PANI film. This method produces a uniform dispersion of Pt particles with smaller particles with diameters ranging between 200 nm and 1 μm. The results indicate that electrochemical methods may be more suitable for controlling particle dimension. Both materials show reduced proton doping relative to PANI without Pt, indicating the metal particles directly influence proton doping and the oxidation state of the polymer. The electrochemical data indicate that the conductivity in solution is sufficient such that the normal acid doping is attainable for PANI/Pt produced using either synthetic method.  相似文献   

13.
Polyaniline (PANI)/polysulfone (PSF) composite films with asymmetric porous structure were successfully prepared by electropolymerization. The back face (in contact with the electrode) of the freestanding composite film is green while the outer face is white. The chemical component and the morphology of the surfaces were characterized by FTIR spectra and scanning electron microscopy, respectively. It was shown that replicate films gave reproducible voltammetry in 0.5 M H2SO4. The influence of the electrolyte and the acidic concentration on the redox peak currents of polyaniline were investigated in detail. The composite film electrode showed good electrocatalytic activity for ascorbic acid, which the anodic overpotential was evidently reduced compared with that obtained at bare Pt electrode. The diffusion coefficient of ascorbic acid was 1.38 × 10−6 cm2 s−1.  相似文献   

14.
The electrocatalytic activity of various metal hexacyanoferrates (Mhcfs) (i) immobilized on graphite electrodes, and (ii) as components of a composite electrode was investigated with respect to the reduction of hydrogen peroxide. The flow-through working electrode was a thin layer consisting of a composite of Mhcf, graphite, and polymethylmetacrylate (PMMA) as a binder, sandwiched between two Plexiglas plates. Among the pure Mhcfs immobilized on a graphite electrode, iron(III) hexacyanoferrate (Prussian blue) exhibits the highest electrocatalytic effect, whereas in the composite electrodes chromium(III) hexacyanoferrate (Crhcf) shows the highest activity and best performance and reproducibility for the electrochemical reduction of H2O2. The Crhcf electrode provides a linear dependence on H2O2 concentration in the range 2.5 × 10−6 mol L−1 (LOD) to 1 × 10−4 mol L−1 (phosphate buffer, pH 7). The sensor was applied for the detection of H2O2 enzymatically produced by glucose oxidase. The optimal conditions for the peroxide injection were 2 min after the beginning of the reaction and 25 °C with a detection limit of 7.0 × 10−6 mol L−1 for glucose.  相似文献   

15.
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO2 thin film electrodes in NaCl or Na2SO4 medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L−1 NaCl pH 4.0 under UV light and an applied potential of +1.0 V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media.  相似文献   

16.
In this work, SiO2/Sb2O3 prepared by the sol-gel processing method, having a specific surface area, SBET, of 790 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt.% of Sb, was used as substrate base for immobilization of the 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine ion. Cobalt(II) ion was inserted into the porphyrin ring with a yield of complex bonded to the substrate surface of 59.4 μ mol g−1. A carbon paste electrode of this material was used to study, by linear sweeping voltammetric and chronoamperometric techniques, the electrocatalytic reduction of dissolved oxygen. The reduction, at the electrode solid-solution interface, occurred at −0.25 V versus SCE in 1.0 mol l−1 KCl solution, pH 5.5, by a four electron mechanism. The electrode response was invariant under various oxidation-reduction cycles showing that the system is chemically very stable. Such characteristics allowed the study of the electrode response towards various dissolved oxygen concentrations using the chronoamperometry technique. The cathodic peak current intensities plotted against O2 concentrations, between 1.0 and 12.8 mg l−1, showed a linear correlation. The electrode response time was very fast, i.e. about 1 s. This study was extended using the electrode to determine the concentration of dissolved oxygen in sea water samples.  相似文献   

17.
The electrochemical oxidation of neutral red in 0.5 mol dm−3 sulfuric acid and 0.2 mol dm−3 ferrocenesulfonic acid solution was carried out using repeated potential cycling between −0.20 and 1.40 V (versus SCE). The polymer film was electrochemically deposited on a platinum anode and had an electrochemical activity in the solution of 0.5 mol dm−3 Na2SO4 with pH ≤ 7.0. The result from the X-ray photoelectron spectroscopy (XPS) experiment shows that the anions can be doped into the polymer film during the electrochemical polymerization reaction of neutral red. The scanning electron microscopy (SEM) micrograph shows that the surface of the resulting polymer film formed on the platinum foil is covered with a compact surface consisting of micro fibers. The visible spectrum and infrared spectrum (IR) of the polymer are different from those of the corresponding monomer. A possible chemical structure of the resulting polymer was also proposed.  相似文献   

18.
The electrochemical oxidation of neutral red in 0.5 mol dm−3 H2SO4 solution was carried out by using repeated potential cycling between −0.20 and 1.20 V (versus SCE). The polymer film was electrochemically deposited on a platinum anode and had an electrochemical activity in the solution of 0.5 mol dm−3 Na2SO4 with pH ≤ 4.0. The result from the X-ray photoelectron spectroscopy (XPS) experiment shows that the anions can be doped into the polymer film during the electropolymerization reaction of neutral red. The scanning electron microscopy (SEM) micrograph shows the surface of poly(neutral red) film deposited on the platinum foil is covered with a micro-structured network of mass interwoven fibers with a diameter of 2-4 μm. A straight fiber of the unsystematic micro-fibers is longer than 0.4 mm. The UV-vis spectrum and infrared spectrum (IR) of the polymer are different from those of the monomer.  相似文献   

19.
Zhichao Hu  Qin Ran  Litong Jin 《Carbon》2010,48(13):3729-361
A simple and versatile method based on noncovalent supramolecular attachment and layer-by-layer (LBL) assembly is proposed to prepare nanostructured hybrid conducting polymer. The negatively charged poly(sodium 4-styrenesulfonate) (PSS) wrapped multiwalled carbon nanotubes (MWCNTs) is doped with cationic polyaniline (PANI) nanofibers via LBL assembly, and a well-defined PANI/MWCNTs composite was obtained. The LBL assembly process is characterized by scanning electron microscopy, energy dispersive spectrometry and electrochemical methods. It was found that PSS wrapped MWCNTs inside the multilayer film can dope nanostructured PANI effectively and shift its electroactivity to a neutral pH environment. Moreover, the conducting composites show amperometric response for hydrogen peroxide with a linear range of 2.0 × 10−7-1.0 × 10−3 mol L−1.  相似文献   

20.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号