首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Application of room temperature ionic liquids to Li batteries   总被引:1,自引:0,他引:1  
Novel electrolyte materials, room temperature ionic liquids (RTILs) were applied to the Li battery system and their characteristics in Li-metal batteries are discussed, partly reviewing authors work in the past. Quaternary ammonium (QA) cation-imide RTIL was focused on because of the excellent stability in cathodic environment of Li. Li/LiCoO2 cell performance and Li cycling efficiency using the selected QA-imide RTIL was almost satisfactory. In addition, thermal stability of selected QA-imide RTIL with the charged positive electrode and Li was the advantage for Li battery. On the other hand, further improvement in the conducting properties is required with balanced approach for both electrochemical stability and thermal stability in order to use the RTIL electrolyte practically in batteries.  相似文献   

2.
Mesopore nickel-based mixed rare-earth oxide (NMRO) and activated carbon (AC) with rich oxygen-contained groups were prepared as electrode materials in a supercapacitor using room temperature ionic liquid (RTIL) electrolyte. These electrode materials were characterized by XPS, XRD, N2 adsorption, SEM as well as various electrochemical techniques, and showed good properties and operated well with RTIL electrolyte. A 3 V asymmetrical supercapacitor was fabricated, which delivered a real power density of 458 W kg−1 as well as a real energy density of 50 Wh kg−1, and during a 500-cycle galvanostatic charge/discharge measurement, no capacity decay was visible. Such promising energy-storage performance was to a large extent ascribed to nonvolatile RTIL electrolyte with wide electrochemical windows and high stable abilities worked with both electrode materials.  相似文献   

3.
A safe electrolyte system is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13TFSI), organic electrolyte (1 mol L−1 LiPF6/EC-DEC) and lithium bis (oxalato) borate (LiBOB). The additive of LiBOB enhances the stability of interface between electrolyte and anode. The LiBOB-containing mixed electrolytes show non-flammability and good compatibility with active materials. The performance of anode for lithium ion battery is successfully improved by LiBOB-containing mixed electrolytes, which shows 200 mA h g−1 reversible capacities at 0.3 C rate. The ionic conductivity and the lithium ion transference number in LiBOB-containing mixed electrolytes system also suits to application for lithium ion battery.  相似文献   

4.
Yaodong Liu  Dewu Long  Guorui Zhang 《Polymer》2005,46(19):8403-8409
Radiation induced polymerization of styrene (St), methyl methacrylate (MMA) and n-butyl methacrylate (BMA) is carried out in a room temperature ionic liquid (RTIL), [Me3NC2H4OH]+[ZnCl3], and in its mixed solutions with THF. The presence of ionic liquid (IL) leads to a significant increase in monomer conversion and polymer's molecular weight. Molecular weight distribution (MWD) of resulting polymer varies with the IL fraction in the RTIL/THF solutions and is also dependent on the monomer used. For polystyrene (PSt) and poly(n-butyl methacrylate) (PBMA), multi-modal broad MWD is observed at IL >50 v% while single-modal narrow MWD is observed at IL <40 v%. For poly(methyl methacrylate) (PMMA), however, nearly a single-modal MWD is observed at THF >20 v%. The measured miscibility of polymer with RTIL is in the order: PMMA>PBMA>PSt. Here we propose that the difference in MWD is due to the inhomogeneous nature of the ionic liquid in micro-region and the immiscibility of polymer with medium.  相似文献   

5.
D. Danilov 《Electrochimica acta》2008,53(17):5569-5578
The ionic conductivity of the organic electrolyte in Li-ion batteries has been modelled. The classical one-dimensional Nernst-Planck approach results in a system of two non-linear parabolic second-order partial differential equations. It is shown that under electro-neutrality conditions this complex system of equations can be reduced to simple diffusion equations with modified diffusion coefficient, facilitating the efficient use of numerical methods. As a result, detailed information about transient and steady-state behaviour of the electrolyte is revealed, including potential gradients and the diffusion and migration fluxes for both Li+ and ions. Furthermore, an extension of the basic model is presented, taking into account salt dissociation in the electrolyte. The most characteristics of ionic transportation are illustrated with realistic examples of constant-current (dis)charging Li-ion batteries. Some of the numerical simulations are compared with recently reported experimental results.  相似文献   

6.
用相转移法制备无纺布增强型聚偏氟乙烯-六氟丙烯聚合物电解质,用扫描电子显微镜和循环伏安对所制聚合物膜性能进行表征,用充放电实验和交流阻抗测试聚合物电池的电化学性质。结果表明:无纺布增强后的聚合物电解质电化学稳定窗口超过5.0 V,室温离子电导率达到2.3 mS/cm,机械强度大幅度提高,以此制备的聚合物电池阻抗降低,充放电时界面阻抗稳定,循环性能得以提高。  相似文献   

7.
Electrochemical intercalation/deintercalation behavior of lithium into/from electrodes of lithium ion batteries was comparatively investigated in 1 mol/L LiClO4 ethylene carbonate-diethyl carbonate (EC-DEC) electrolyte and a quaternary ammonium-based ionic liquid electrolyte. The natural graphite anode exhibited satisfactory electrochemical performance in the ionic liquid electrolyte containing 20 vol.% chloroethylenene carbonate (Cl-EC). This is attributed to the mild reduction of solvated Cl-EC molecules at the graphite/ionic electrolyte interface resulting in the formation of a thin and homogenous SEI on the graphite surface. However, rate capability of the graphite anode is poor due to the higher interfacial resistance than that obtained in 1 mol/L LiClO4/EC-DEC organic electrolyte. Spinel LiMn2O4 cathode was also electrochemically cycled in the ionic electrolyte showing satisfactory capacity and reversibility. The ionic electrolyte system is thus promising for 4 V lithium ion batteries based on the concept of “greenness and safety”.  相似文献   

8.
In view of the safety concerns and the requirements of high energy density lithium batteries, the room temperature ionic liquids (RTILs) are being investigated as suitable candidates to substitute organic electrolytes in polymer electrolytes. In this article, we report synthesis, characterization, and electrochemical properties of nanocomposite polymer electrolytes (NCPEs) comprising of a RTIL [n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)] and nano-sized ceramic fillers (SiO2, Al2O3 or BaTiO3) hosted in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] membranes. The addition of BMITFSI and ceramic fillers in polymer electrolytes results in high ionic conductivity at room temperature. The cells prepared with BMITFSI and different NCPEs show good interfacial stability and oxidation stability at >5.5 V with the highest value of 6.0 V for the NCPE incorporating BaTiO3. The cell with the NCPE containing BaTiO3 delivers high initial discharge capacity of 165.8 mA h g−1, which corresponds to 97.5% utilization of active material under the test conditions, and showed the least % capacity fade after prolonged cycling.  相似文献   

9.
A new composite film of microbial exocellular polysaccharide-gellan gum (GG) and room temperature ionic liquid (IL) 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) was firstly used as an immobilization matrix to entrap proteins and its bioelectrochemical properties were studied. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the composite film. The obtained results demonstrated that the Hb molecule in the film kept its native structure and showed its good electrochemical behavior. A pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared in pH 7.0 phosphate buffer solutions (PBS, 0.1 M), with the formal potential (E°′) of −0.368 V (vs. SCE), which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The Hb-IL-GG-modified electrode also showed an excellent electrocatalytic behavior to the reduction of hydrogen peroxide (H2O2). Therefore, this kind of composite film as a novel substrate offers an efficient strategy and a new promising platform for further study on the direct electrochemistry of redox proteins and the development of the third-generation electrochemical biosensors.  相似文献   

10.
Lithium vanadium fluorophosphate, LiVPO4F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO4F//LiVPO4F cell. The electrochemical evolution of the LiVPO4F//LiVPO4F cell with the commonly used organic electrolyte LiPF6/EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF4/EMIBF4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01–2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm−2 and 25 °C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20–25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g−1 was observed when the operating temperature was increased up to 80 °C at 0.1 mA cm−2. The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO4F with both the IL and organic electrolytes was also examined.  相似文献   

11.
Cycling performance of Li-ion cells was studied by using electrochemical impedance spectroscopy (EIS). Results showed that total resistance (Rcell) of the Li-ion cells is mainly composed of bulk resistance (Rb), solid-state interface resistance (Rsei) and charge-transfer resistance (Rct). During cycling, the Rb and Rsei remain unchanged while the Rct displays two minima in the same voltage regions where the major peaks of differential capacities are present. The Rct can be linked to kinetics of the cell electrochemical reaction. In response to the temperature change, the Rb and Rsei vary in a very similar manner, while the Rct shows significant difference. In the fully charged and discharged states as well as at the low temperatures (≤20 °C), the Rcell of the Li-ion cells is predominated by the Rct. Using the term of the Rct, we explained two low temperature phenomena of the Li-ion battery: (1) charging of a fully discharged cell is much more difficult than discharging of a fully charged cell, and (2) both the power (operating voltage) and energy (delivered capacity) are substantially reduced.  相似文献   

12.
A new method with high sensitivity was developed to determine gossypol content using CdTe quantum dot (QD) electrochemiluminescence (ECL) with a room temperature ionic liquid (RTIL) modified glassy carbon (GC) electrode. It was found that use of RTIL film on the GC electrode can greatly enhance the ECL intensity of CdTe QDs, and the ECL peak potential and ECL onset potential were both shifted positively. Under optimal conditions, the quenching effect of gossypol on the ECL emission of CdTe QDs was observed, and ECL intensity showed a good linear relationship in the gossypol concentration range of 5.0 × 10−7 to 5.0 × 10−9 M with a detection limit of 5.0 × 10−9 M. The proposed method was used to detect gossypol in cottonseed oil with satisfactory results. As a result, the introduction of an RTIL-modified electrode can extend the analytical applications of QD ECL systems.  相似文献   

13.
周丹  梁风  姚耀春 《化工进展》2016,35(5):1477-1483
解决锂离子电池电极材料和电解液相容性的关键是形成稳定且Li+可导的固态电解质界面膜(SEI膜),因此,对优质负极成膜添加剂的研究成为锂离子电池研发中的一个热点。本文综述了锂离子电池电解液成膜添加剂的作用原理,具体介绍了各类负极成膜添加剂的研究现状,从成膜反应机理和理论计算方面详述了近几年来负极成膜添加剂的研究进展。分析了所存在的问题主要是如何快速地挑选出更适宜、更高效的成膜添加剂,并指出了成膜添加剂未来的发展趋势为:①研究各添加剂与电解液的反应机理,着重开发对锂离子电池副反应小的负极成膜添加剂;②通过选择两种或两种以上的添加剂的协同作用,以弥补一种添加剂的不足;③提高无机成膜添加剂在电解液中的溶解度。  相似文献   

14.
Triazines are well known as flame retardants, however, their properties for battery applications have not been much explored. Flame retardants can play an important role in preventing dangerous situations that may occur when battery packs malfunction or are misused. However, the addition of flame retardants to batteries can degrade their performance due to the non-ionic properties of the additives. In order to overcome this drawback of additives, fluorinated material has been investigated, because fluorination frequently prevents deterioration of performance. A fluoride-rich triazine used as an additive to the electrolyte, 2,4,6-tris(trifluoromethyl)-1,3,5-triazine (TTFMT), showed excellent thermal stability with charged cathodes and anodes. Addition of 5 wt.% TTFMT to the electrolyte reduced the exothermic heat from the oxygen release reaction in the cathode by 54%. Surface film formation on the cathode is discussed with reference to cyclic voltammetry combined with impedance spectroscopy and differential scanning calorimetry. The properties of the film were influenced by the additive so as to markedly reduce the charge-transfer resistance, which enhanced the charge retention during cycle life, the capacity, and the high-rate discharge capacity of the battery.  相似文献   

15.
Ya Zhang 《Electrochimica acta》2007,52(12):4082-4086
The oxidation behavior of iodide has been investigated by linear sweep voltammetry and cyclic voltammetry at a platinum electrode in the room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]). The experimental results showed that iodide yielded two oxidation peaks Pa1 and Pa2 in [C4mim][BF4], and both of Pa1 and Pa2 are diffusion-controlled. Pa1 yielded from iodide to triiodide at +0.58 V is a two-electron oxidation wave, and Pa2 yielded from triiodide to iodine at +1.00 V is one-electron oxidation wave. Linear relationships between Ipa1 and the concentration of iodide can be established from 0.45 to 7.2 mmol L−1 with a detect limit of 0.3 mmol L−1 by linear sweep voltammetry, and from 0.30 to 7.8 mmol L−1 with a detect limit of 0.2 mmol L−1 by differential pulse voltammetry. These methods can be used for simple, rapid determination of iodide in the crude [C4mim][BF4].  相似文献   

16.
综述了近十几年来高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展及其在高温质子交换膜燃料电池中的应用进展,指出了此类电解质目前存在的亟待解决的两个问题:咪唑类离子液体毒化Pt基催化剂和复合膜中离子液体的长期稳定性。最后对高温质子交换膜燃料电池用离子液体聚合物电解质的发展前景作了展望,即开发与Pt基催化剂相容的离子液体聚合物电解质以及预防复合膜内离子液体的流失,即提高高温质子交换膜燃料电池的性能及长期稳定性,最终提高高温燃料电池的寿命。  相似文献   

17.
The direct electrodeposition of conjugated polymers onto active metals such as aluminum and its alloys is complicated by the concomitant oxidation of the metal that occurs at the positive potential required for polymer formation/deposition. We previously described an approach that uses electron transfer mediation to reduce the deposition potential of polypyrrole (PPy) on aluminum and aluminum alloy by nearly 500 mV, permitting film deposition from aqueous solution with nearly 100% current efficiency. In this report, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+TFSI) has been successfully employed both as the growth medium and the supporting electrolyte for directly depositing uniform and conductive PPy coatings onto Al alloy 2024-T3 surface via a potentiodynamic technique. The depositions of PPy were carried out under cyclic voltammetric conditions from 0.3 M pyrrole in ionic liquid solutions. Film morphology was characterized by atomic force microscopy, optical microscopy, and scanning electron microscopy (SEM). Energy dispersive X-ray analysis and X-ray photoelectron spectroscopy verified that the TFSI anion was incorporated into the polymer as the dopant ion. Thickness of the film was measured by SEM and film conductivity was determined by both a four-point probe technique and by conducting atomic force microscopy. Electrochemical activity of the film was assessed by cyclic voltammetry. Results from these preliminary studies will be reported. Presented at the 2007 FutureCoat! conference, sponsored by the Federation of Societies for Coatings Technology, in Toronto, Ont., Canada, on October 3–5, 2007.  相似文献   

18.
锂离子电池低温电解液的研究进展   总被引:1,自引:0,他引:1  
张国庆  马莉  倪佩  刘元刚 《化工进展》2008,27(2):209-213
分析了从溶剂、锂盐和添加剂3个方面对电解液低温性能进行改进技术的研究现状.首先比较了乙烯碳酸酯(EC)基和丙烯碳酸酯(PC)基溶剂的低温性能,并针对这两类有机电解液的电化学和低温特性的改进,详细论述了几种重要的方法和措施,得出有机溶剂优化和添加剂的使用是提高电解液低温性能的有效手段的重要结论.最后指出了锂离子电池电解液低温性能的研究方向和应用前景.  相似文献   

19.
A lithium-polymer battery based on an ionic liquid-polymer electrolyte (IL-PE) composite membrane operating at room temperature is described. Utilizing a polypyrrole coated LiV3O8 cathode material, the cell delivers >200 mAh g−1 with respect to the mass of the cathode material. Discharge capacity is slightly higher than those observed for this cathode material in standard aprotic electrolytes; it is thought that this is the result of a lower solubility of the LiV3O8 material in the IL-PE composite membrane.  相似文献   

20.
Zhiying Li  Yang Liu  Jun Li  Jinghong Li 《Polymer》2005,46(18):7578-7584
Composite electrolyte comprising methylsisesquioxane (MSQ) filler and 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF4) ionic liquid (IL) in poly(2-hydroxyethyl methacrylate) (PHEMA) matrix had been prepared. The polymer matrix was formed by free radical polymerization of HEMA macromer, and MSQ was produced in situ from methyl-trimethoxysilane by the sol-gel method. Infrared spectroscopy and dynamic mechanical analysis were employed to give insight into the interactions among the methylsisesquioxane filler, BMImBF4 and the PHEMA polymer matrix. The PHEMA-IL-MSQ hybrids and the PHEMA-IL electrolyte without MSQ were investigated regarding their ionic conductivity and thermal and electrochemical properties. BMImBF4 increased the thermal stability of the polymer and provided the ion conductivity; MSQ filler as the additive increased the mechanical strength of the polymer and provided the ion conductive pathway. The electrolyte with MSQ at the 10 wt% showed the highest ionic conductivity of 5×10−4 S cm−1 which was five times higher than that of the electrolyte without MSQ, and the electrochemical window was up to 3.6 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号