首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wei Ye  Fuhui Wang 《Electrochimica acta》2006,51(21):4426-4432
Nanocrystallized (NC) 309 stainless steel (309SS) coating has been fabricated on glass substrate by DC magnetron sputtering. The coating, with an average grain size less than 50 nm, had ferritic (bcc) structure rather than the austenitic (fcc) structure of the bulk steel. The electrochemical corrosion behavior of the NC coating and the bulk steel in solutions of 0.25 M Na2SO4 + 0.05 M H2SO4 and 0.5 M NaCl + 0.05 M H2SO4 was investigated by using potentiodynamic polarization, potentiostatic polarization and AC impedance techniques. The results showed that the corrosion behavior of the NC 309SS coating and 309SS bulk steel depended on the composition of the solutions. In the Na2SO4 solution there was only a little difference between the corrosion resistance of the passive films on the NC coating and the bulk steel. However, in the solution with chloride ions, the localized corrosion resistance of 309SS was greatly enhanced by nanocrystallization due to the formation of a compact and stable passive film on the NC coating. The electronic structure of the passive film formed on the NC coating and on the bulk steel was analyzed by means of capacitance measurements, and a corrosion mechanism is proposed.  相似文献   

2.
The behaviour of steel electrodes in sodium methanoate solutions was studied by coupling electrochemical techniques (voltammetry, OCP vs. time) with in situ micro-Raman spectroscopy analyses of the corrosion products. The polarisation curves depended strongly on the methanoate concentration. For the smallest concentration (10−3 mol L−1), the current density increased regularly with the applied potential. So the behaviour of the electrode was typical of an active material. In contrast, for the largest concentration (10−1 mol L−1), the curves obtained were typical of a passive material. Methanoate ions favoured growth and stability of a passive oxide film more likely by adsorbing on its surface. The polarisation curve obtained for the intermediate concentration (10−2 mol L−1) was unusual and testified of an imperfect passivation of the steel surface. Finally, steel electrodes were left at the open circuit potential in the methanoate solutions. In any case, the passivity was rapidly lost and a general corrosion of the surface took place. In situ Raman spectroscopy analyses at the early stage of the corrosion process demonstrated that the first product to form was a green rust, GR(HCOO). It was oxidised later into γ-FeOOH (lepidocrocite) by dissolved O2. The process is then typical of what is usually observed in neutral or alkaline media, whatever the anions present and responsible of the GR formation. A new and detailed characterisation of GR(HCOO) by X-ray diffraction was performed and a crystal structure is proposed.  相似文献   

3.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

4.
In this paper, the results on the electrochemical impedance spectroscopy and corrosion properties of electrodeposited nanostructured Al2O3-Ni composite coatings are presented. The nanocomposite coatings were obtained by codeposition of alumina nanoparticles (13 nm) with nickel during plating process. The coating thickness was 50 μm on steel support and an average of nano Al2O3 particles inside of coatings at 15 vol.% was present. The structure of the coatings was investigated by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure. The electrochemical behavior of the coatings in the corrosive solutions was investigated by polarization potentiodynamic and electrochemical impedance spectroscopy methods. As electrochemical test solutions 0.5 M sodium chloride and 0.5 M potassium sulphate were used in a three electrode open cell. The corrosion potential is shifted to more negative values for nanostructured coatings in 0.5 M sodium chloride. The polarization resistance in 0.5 M sodium chloride decreases in 24 h, but after that increases slowly. In 0.5 M potassium sulphate solution the polarization resistance decreases after 2 h and after 30 h of immersion the polarization resistance is higher than that of the beginning value. The corrosion rate calculated by polarization potentiodynamic curves obtained after 30 min from immersion in solution is smaller for nanostructured coatings in 0.5 M potassium sulphate (4.74 μm/year) and a little bit bigger in 0.5 M sodium chloride (5.03 μm/year).  相似文献   

5.
Lin Liu  Bing Liu 《Electrochimica acta》2006,51(18):3724-3730
(Cu47Zr11Ti34Ni8)100−xMox bulk metallic glasses (BMGs) with x = 0, 1 and 2 at.% and a bulk metallic glass matrix composite with x = 5 at.% were successfully prepared by water-cooled copper mold casting. The effect of the addition of a small amount of Mo on the glass forming ability (GFA), thermal properties of the base alloy (i.e. x = 0) were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It is found that the addition of appropriate amount of Mo can enhance the GFA of the Cu-based BMG, as indicated by the increase in the reduced glass transition temperature Trg (=Tg/Tl) and the parameter γ (=Tx/(Tg + Tl)) with the increase of Mo. On the other hand, the corrosion resistance of the Cu-based BMGs with different Mo contents was examined by electrochemical polarization and weight loss measurement in 1 mol/L H2SO4 and 1 mol/L NaOH solutions, respectively. It is found that the corrosion resistance of Cu-based BMGs increased with increasing Mo content with the lowest corrosion rate of (0.9 ± 0.2) × 10−3 mm/year in 1 mol/L H2SO4 solution and (0.3 ± 0.1) × 10−3 mm/year in 1 mol/L NaOH solution, respectively, for the BMG containing 2 at.% Mo. X-ray photoelectron spectroscopy (XPS) results revealed that the improvement of corrosion resistance of Cu-based BMG containing appropriate amount of Mo originated from the enrichment of ZrO2 and TiO2, but depletion in Cu- or Ni-oxides in the passive films formed during electrochemical polarization. Finally, the galvanostatic-step measurement was performed to investigate the kinetics of the formation of passive films on the BMG surfaces. It is demonstrated that the addition of an appropriate amount of Mo can effectively improve the stability and uniformity of the passive film. The role of Mo addition on the glass forming ability and corrosion behavior is discussed.  相似文献   

6.
The effects of cold work and sensitization treatment on the microstructure and corrosion resistance of a nickel-free high nitrogen stainless steel (HNSS) in 0.5 M H2SO4 + 0.5 M NaCl, 3.5% NaCl and 0.5 M NaOH + 0.5 M NaCl solutions have been investigated by microscopic observations, electrochemical tests and surface chemical analysis. Cold work introduced a high defect density into the matrix, resulting in a less protective passive film as well as reduced corrosion resistance for heavily cold worked HNSS in a 3.5% NaCl solution. No obvious degradation in corrosion resistance took place in a 0.5 M H2SO4 + 0.5 M NaCl solution, possibly due to the stability of the passive film in this solution. Sensitized HNSSs showed reduced corrosion resistance with increasing cold work level in both 3.5% NaCl and 0.5 M H2SO4 + 0.5 M NaCl solutions due to a reduction in the anti-corrosion elements in the matrix during the cold work-accelerated precipitation process. The cold work and sensitization treatment had no influence on the corrosion resistance of the HNSS in the 0.5 M NaOH + 0.5 M NaCl solution even though the property of the passive film changed. The effects of cold work and sensitization treatment on the characteristics of passive films formed in the three solutions are discussed.  相似文献   

7.
The aim of this work is to improve the electrochemical behavior of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. We grew TiN[BCN/BN]n/c-BN multilayers via reactive r.f. magnetron sputtering technique, systematically varying the length period (Λ) and the bilayer number (n), maintaining constant the total thickness of the coating and all other growth parameters. The coatings were characterized by FTIR spectroscopy that showed bands associated to h-BN bonds, and c-BN stretching vibrations centered at 1385 cm− 1 and 1005 cm− 1, respectively. Film composition was studied via X-ray photoelectron spectroscopy where typical signals for C1s, N1s and B1s are shown. The electrochemical properties were studied by electrochemical impedance spectroscopy and Tafel curves. In this work, the maximum corrosion resistance for the coating with (Λ) equal to 80 nm was obtained, corresponding to n = 25 bilayers. The polarization resistance and corrosion rate were around 10.1 kOhm cm2 and 0.22 mm/year; these values were 83 and 15 times higher, respectively, than uncoated AISI 4140 steel substrate (0.66 kOhm cm2 and 18.51 mm/year). Optical microscopy was used for surface analysis after corrosive attack. The improvement of the electrochemical behavior of the AISI 4140 coated with this TiN[BCN/BN]n/c-BN multilayer system can be attributed to the presence of several interfaces that offer resistance to diffusion of Cl of the electrolyte toward the steel surface.  相似文献   

8.
Poly(3-octyl thiophene) (P3OT) and poly(3-hexylthiophene) (P3HT) dissolved in toluene were deposited onto 1018 carbon steel and corroded in 0.5 M H2SO4. P3OT and P3HT films were chemically deposited by drop casting onto 1018-type carbon steel with two surface finishing, i.e. abraded with 600-emery paper and with alumina (Al2O3) particles of 1.0 μm in diameter (mirror finish). Their corrosion resistance was estimated by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy, EIS, techniques. In all cases, polymeric films protected the substrate against corrosion, but the protection was improved if the surface was polished with Al2O3 particles of 1.0 μm in diameter. The polymer which gave the best protection was P3HT because the amount of defects was much lower than that for the P3OT films. The polymers did not act only as a barrier layer against aggressive environment, but they improved the passive film properties by decreasing the critical current necessary to passivate the substrate, increasing the pitting potential and broadening the passive interval.  相似文献   

9.
MnS inclusions are good precursor sites for pitting corrosion of stainless steel. The objective of this paper was to quantify the passive properties of resulfurized stainless steel after immersion in chloride media. This was done by combining microcapillary techniques with electrochemical impedance spectroscopy and numerical analysis (specific equivalent circuit). It was shown that sulfur species produced in the electrolyte during the dissolution of inclusions react with the native passive film to CrS and FeSO4. Local electrochemical impedance spectroscopy measurements provided data describing the behaviour of the affected matrix at the microscale. For example, the value of the charge transfer and migration of point defects resistance decreases from 51,700 Ω cm2, in sites free of any metallurgical heterogeneity down to 12,200 Ω cm2, in sites containing a high density of inclusions. It was also shown that the integrity of the microcapillary can be altered by the presence of high quantity of sulfur in the electrolyte. Local impedance data allowed the detection of such problems.  相似文献   

10.
Corrosion inhibition of mild steel in H3PO4 containing chloride or sulphate ions have been studied using different electrochemical techniques. The corrosion and hydrogen evolution of mild steel alloy in 2 M H3PO4 acid containing 0.5 M NaCl can be effectively inhibited by addition of natural product compound, Thymol (IPMP), of different concentrations. However, in 2 M H3PO4 containing 0.5 M Na2SO4 corrosion cannot be effectively inhibited. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements confirm the synergistic effects which describe the increase in the effectiveness of a corrosion inhibitor in the presence of Cl ions in the corrosive medium. At any temperature, an increase in it leads to an increase of the corrosion rate and hydrogen evolution on mild steel. Polarization and EIS results are in good agreement with each other. The obtained results were confirmed by surface examination using scanning electron microscope.  相似文献   

11.
The role of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels was investigated in 0.5 M H2SO4, 3.5% NaCl and 0.5 M H2SO4 + 0.5 M NaCl solutions using potentiodynamic polarization, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. The passive film stability was enhanced in 0.5 M H2SO4 and the pitting resistance was improved in 3.5% NaCl solution by more nitrogen addition. The influence of nitrogen extended the whole anodic polarization region in 0.5 M H2SO4 + 0.5 M NaCl solution, as demonstrated by the enhanced dissolution resistance, promoted adsorption and passivation process, improved film protection and pitting resistance with increasing nitrogen content. Possible mechanisms relating to the role of nitrogen in different potential regions were discussed.  相似文献   

12.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

13.
Fe-10Cr nanocrystalline (nc) coatings with a grain size of 20-30 nm were synthesized on glass substrates by magnetron sputtering. The corrosion behavior was investigated in 0.05 mol/L H2SO4 + 0.25 mol/L Na2SO4 and 0.05 mol/L H2SO4 + 0.5 mol/L NaCl solution by polarization curves, EIS and Mott-Schottky analysis. The results showed that compared to Fe-10Cr cast alloy, the active dissolution of the coating was accelerated; the passive film contained more Cr and therefore the coating was easier to passivate. The passive films formed on Fe-10Cr nc and cast alloy exhibited n-type semiconducting behavior in acidic solutions without Cl and p-type semiconducting behavior in acidic solutions with Cl. The lower breakdown potential for both materials in the solution with Cl is related to the p-type passive film formed on them. For Fe-10Cr nc, lower donor density and increased Cr content were responsible for the chemical stability of the passive film.  相似文献   

14.
The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5 M H2SO4 at 60 °C and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, Ecorr, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the Ecorr value of the coating decreased slowly until it reached a steady state value, close to the Ecorr value of the underlying alloy.  相似文献   

15.
Organic coating strategies for corrosion protection with inherently conducting polymers have become important because of restriction on the use of heavy metals and chromates in coatings due to their environmental problems. This work presents the synthesis of polyaniline-TiO2 composites (PTC) and the corrosion protection behaviour of PTC containing coating on steel. PTC was prepared by chemical oxidation of aniline and TiO2 by ammonium persulfate in phosphoric acid medium. The PTC was characterized by FTIR, XRD and SEM techniques. Suitable coating with PTC was formed on steel using acrylic resin. Using electrochemical impedance spectroscopy, the PTC containing coating's behaviour in 3% NaCl immersion test and salt spray test has been found out. Results indicate that the coating containing PTC is able to maintain the potential of steel in passive region due to its redox property. The resistance of the coating containing PTC was more than 107 Ω cm2 in 3% NaCl solution after 60 days and 109 Ω cm2 in the salt spray test of 35 days. But the resistance of the TiO2 containing coating was found to be less than 104 Ω cm2 in both the cases. The high performance of PTC containing coating is attributed to the passivation of steel by polyaniline.  相似文献   

16.
The scanning micro-reference electrode (SMRE) technique was used to study the corrosion behavior of reinforcing steel in simulated concrete pore (SCP) solutions with different pH values. The early stage as well as the propagation of the localized corrosion of reinforcing steel in different solutions was explored. The results indicated that the potential distribution on the reinforcing steel surface changed in homeostasis and the steel remained passive in the pure simulated concrete pore solution. The solution pH had a significant effect on the localized corrosion of reinforcing steel, and the critical pH value for localized corrosion of reinforcing steel in SCP solutions was between 11.46 and 11.31.  相似文献   

17.
Acetyl thiourea chitosan polymer (ATUCS) has been synthesized and evaluated as corrosion inhibitor. The electrochemical behavior of mild steel in naturally aerated 0.5 M H2SO4 acid containing different concentrations of ATUCS has been studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements and surface examination via scanning electron microscope (SEM) technique. The results of EIS showed that the resistance (Rt) increases slightly with increasing immersion time indicating a slight decrease in corrosion rate of the steel with time. Also, the corrosion rate increases with either increasing temperature or decreasing the polymer concentration as observed by polarization technique. Electrochemical impedance spectroscopy measurements under open-circuit conditions confirmed well polarization results. ATUCS has shown very good inhibition efficiency (IE) in 0.5 M sulphuric acid solution reaches to 94.5% for 0.76 mM concentration. IE of this compound has been found to vary with the concentration of the polymer solution, immersion time and temperature.  相似文献   

18.
The acid corrosion inhibition process of mild steel in 1 M HCl by 1-butyl-3-methylimidazolium chlorides (BMIC) and 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) has been investigated using electrochemical impedance, potentiodynamic polarization and weight loss measurements. Potentiodynamic polarization studies indicate the studied inhibitors are mixed type inhibitors. For both inhibitors, the inhibition efficiency increased with increase in the concentration of the inhibitor and the effectiveness of the two inhibitors are in the order [BMIM]HSO4 > BMIC. The adsorption of the inhibitors on mild steel surface obeyed the Langmuir's adsorption isotherm. The effect of temperature on the corrosion behavior in the presence of 5 × 10−3 M of inhibitors was studied in the temperature range of 303-333 K. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy of activation (ΔH), entropy of activation (ΔS), adsorption equilibrium constant (Kads) and standard free energy of adsorption (ΔGads) were calculated to elaborate the mechanism of corrosion inhibition.  相似文献   

19.
The effect of systematic increase of Al content on the electrochemical behavior of the Mg-Al alloys in aqueous solutions of different pH was investigated. Different electrochemical methods such as open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy, EIS, were used to investigate the electrochemical behavior of the alloys in aqueous solutions. The results have shown that Mg-5Al is easily corroded due to the microgalvanic effect between α-phase and β-phase, its corrosion rate is even higher than that of Mg itself. The increase of Al content increases the corrosion resistance of the alloy due to the formation of the β-phase (Mg17Al12) together with the Mg α-phase. The ranking of the corrosion rate of these alloys was Mg-5Al > Mg > Mg-10Al ≅ Mg-15Al. The corrosion rates of the alloys in acidic solutions are pronouncedly high compared to those measured in neutral or basic solutions. The impedance measurements are in consistence with the polarization techniques and the impedance data were fitted to theoretical data obtained according to an equivalent circuit model describing the electrode/electrolyte interface.  相似文献   

20.
Stainless steels (types 304 and 310S) were employed as bipolar plates for polymer electrolyte membrane fuel cells. For the cell operation, the decayed cell voltage was approximately 22 mV for the type 310S stainless steel after 1000 h operation, while that for type 304 stainless steel was about 46 mV. Corrosion products appeared on the cathode side bipolar plate for the type 304 stainless steel, while trace of corrosion was barely detected for type 310S stainless steel. In order to follow the pH on the bipolar plates during fuel cell operation, polarization tests were carried out for the type 310S stainless steel in synthetic solutions (0.05 M SO42− (pH 1.2-5.5) + 2 ppm F) as a function of pH (1.2-5.5) at 353 K. We also examined the contact resistance between the stainless steel and carbon diffusion layer before and after polarization. X-ray photoelectron spectroscopic (XPS) analyses were carried out for comparison of the surface states of the steels after the polarization tests and cell operation. In the synthetic solutions with lower pHs (≤3.3), the films were thinner and were mainly composed by enriched with chromium oxide. Whereas, they mainly consisted of relatively thick iron oxide when the solution pH was higher (≥4.3). XPS analyses for the bipolar plate of type 310S stainless steel on cathode side after cell operation demonstrated pH gradient on the plate, that is, the thicker iron-rich surfaces presented relatively higher pH from the gas inlet to center area, and the thinner chromium-rich surface appeared with lower pH around the gas outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号