首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of charge propagation in nickel hexacyanoferrate, a model metal-substituted analogue of Prussian Blue-type cyanide-bridged systems, was considered in electrolytes containing potassium and other alkali metal cations. The apparent (effective) diffusion coefficients for charge transport were determined using a large-amplitude potential-step chronocoulometry and small-amplitude potential-step chronocoulometric potentiostatic intermittent titration. The dependence of diffusion coefficient on the potential applied is consistent with the intercalation like model of the counter-cation sorption/desorption during redox processes of nickel hexacyanoferrate. Some differences in diffusion coefficients may originate from distinct charge densities (membrane properties) of the oxidized and reduced metal hexacyanoferrate structures. The existence of strong attractive interactions between an alkali metal cation and the cyanometallate matrix is also expected. The overall dynamics of charge propagation seems to be controlled by transport of electrolyte cations within the film rather than by electron self-exchange (hopping) between the mixed-valence hexacyanoferrate(III,II) ionic sites.  相似文献   

2.
Electrochemical mass transfer experiments are performed in a channel in which one wall is made of a soft polymer gel. Mass transfer is enhanced up to 25% relative to rigid walls when the ratio of viscous to elastic forces on the gel increases above a critical value. The enhancement is attributed to a hydrodynamic instability occurring at the fluid-gel interface. The results suggest that soft elastic boundaries could serve as a mechanism for improving mixing and transport in the laminar flows characteristic of microfluidic devices and other small-scale geometries.  相似文献   

3.
Models play an important role in fuel cell design/development. The most critical problems to overcome in the proton exchange membrane (PEM) fuel cell technology are the water and thermal management. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer in a single PEM fuel cell is presented. Special attention is devoted to the water transport through the membrane which is assumed to be a combined effect of diffusion and electro-osmotic drag. The transport of heat through the gas diffusion layers is assumed to be a conduction-predominated process and heat generation or consumption is considered in the catalyst layers. The analytical solutions for concentration and net water transport coefficient are compared with recent published experimental data. The operating conditions considered are various cathode and anode relative humidity (RH) values at and 2 atm. The studied conditions correspond to relatively low values of RH, conditions of special interest, namely, in the automotive applications. Model predictions were successfully compared to experimental and theoretical I-V polarization curves presented by Hung et al. [2007. Operation-relevant modelling of an experimental proton exchange membrane fuel cell. Journal of Power Sources 171, 728-737] and Ju et al. [2005a. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer 48, 1303-1315]. The developed easy to implement model using low CPU consumption predicts reasonably well the influence of current density and RH on the net water transport coefficient as well as the oxygen, hydrogen and water vapour concentrations at the anode and cathode. The model can provide suitable operating ranges adequate to different applications (namely low humidity operation) for variable MEA structures.  相似文献   

4.
Ionomeric polymer transducers (sometimes called “ionic polymer-metal composites,” or “IPMCs”) are a class of electroactive polymers that are able to operate as distributed electromechanical actuators and sensors. Traditionally, these transducers have been fabricated using water-swollen Nafion membranes. This work seeks to overcome the hydration dependence of these transducers by replacing water with an ionic liquid. In the current work, two ionic liquids are studied as diluents for ionomeric polymer transducers based on Nafion membranes. The two ionic liquids used are 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-Im). These two ionic liquids were chosen for their low viscosity and high conductivity. Furthermore, although many of the physical properties of the two ionic liquids are similar, the EMI-Tf ionic liquid is water miscible whereas the EMI-Im ionic liquid is hydrophobic. These important similarities and differences facilitated investigations of the interactions between the ionic liquids and the Nafion polymer.This paper examines the mechanisms of electromechanical transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers in the ionic liquid-swollen films. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a molecular/morphological model of the charge transport mechanism responsible for electromechanical coupling in these membranes.  相似文献   

5.
Numerical simulations were done both as an exploration into the nature of oxygen transport within microfluidic cell culture devices and an investigation of the relative importance of various design parameters. A rectangular channel comprised of an oxygen permeable polymer layer bonded to a glass substrate seeded with a monolayer of oxygen-consuming cells was modeled. Oxygen transport by both convection and diffusion within the cell culture media and by diffusion in the polymer layer were explored using finite element analysis. Stiff spring analysis was applied at the interface between these two regions to ensure a continuous flux of O2 across the boundary. The O2 utilization of the cells was approximated by a constant flux of oxygen from the bottom of the channel. The model was verified against an analytical solution from the literature. Design parameters including flow rate, diffusive layer thickness, and material selection were manipulated within the model to determine their relative importance in ensuring adequate supplies of oxygen for cell growth. The solubility and diffusivity of oxygen within the polymer layer were found to be key parameters in determining the amount of oxygen available to the cells, along with the flow rate of the media perfusing the system. These explorations will enable rational design choices to be undertaken during the implementation of microfluidic devices for cell culture.  相似文献   

6.
Mass transfer and friction factor correlations for commercially available hollow fibre and flat sheet blood oxygenators have been determined experimentally. Water was used as a substitute for blood. The diffusion of oxygen into and out of water has been studied. Three different flow configurations have been investigated: flow inside hollow fibres, flow outside and across woven hollow fibre bundles and flow in thin channels. For flow inside the fibres, the results obtained are in close agreement with analogous theoretical correlations. The results for flow across bundles of woven hollow fibres may be compared to analogous results for flow in cross flow heat exchangers.For flow in thin channels, the results obtained here are in agreement with the analogous theoretical heat transfer correlation developed by Lévêque. However, at Graetz numbers less than 10, the results deviate from the predictions of Lévêque. This deviation cannot be predicted by extensions to the Lévêque solution or from the more rigorous analysis by Graetz. However it is possible to predict the observed deviation by considering slight polydispersity in the thickness of the thin liquid flow channels.  相似文献   

7.
Charge transport (CT) in a Nafion membrane containing μ-oxobis[aquabis(2,2′-bipyridine)ruthenium(III)] complex, [(bpy)2(H2O)RuORu(H2O)(bpy)2]4+ (bpy=2,2′-bipyridine, abbreviated to RuIIIORuIII) was investigated by potential-step chronocoulospectrometry (PSCCS). Electrochemical reduction of RuIIIORuIII in the membrane occurred irreversibly to form [Ru(bpy)2(OH2)2]2+ monomer. The CT by reduction of RuIIIORuIII in the membrane was suggested to take place by physical displacement of the complex, which is quite different from the mechanism in the CT by oxidation of RuIIIORuIII in the same membrane in which charge is transported by charge hopping based on reversible redox reaction between RuIIIORuIII and RuIIIORuIV. The fractions of the electrochemically reacted complex in the membrane for the oxidative CT was dependent on the complex concentration, and the yield was low (maximum fraction=0.42 at 0.87 M) relative to the reductive CT. By contrast, the fraction for the reductive CT was independent of the concentration over 0.12 M and close to unity. The different concentration dependence of the fraction was discussed related to the difference in the CT mechanism.  相似文献   

8.
This paper reports the effects of Co2+ contamination on PEM fuel cell performance as a function of Co2+ concentration and operating temperature. A significant drop in fuel cell voltage occurred when Co2+ was injected into the cathode air stream, and Co2+ contamination became more severe with decreasing temperature. To investigate in detail the mechanism of Co2+ poisoning, AC impedance was monitored before and during Co2+ injection, revealing that both charge transfer and mass transport related processes deteriorated significantly in the presence of Co2+, whereas membrane conductivity decreased to a lesser extent. Surface cyclic voltammetry and contact angle measurements further revealed changes in physical properties, such as active Pt surface area and hydrophilicity, furthering our understanding of the contamination process.  相似文献   

9.
Jose Marchese 《Desalination》2004,164(2):141-149
The facilitated transport of Cd(Il) ions through a hollow-fiber-supported liquid membrane with bis-2-ethylhexyl phosphoric acid as carrier was studied. The mass transfer rate, expressed as permeability P, was measured as a function of mean aqueous solution velocity and carrier concentration. Characteristic ion permeabilities of 10-26 × 10−7 m/s were measured at feed velocities between 1 × 10−2−19 × 10−2 m/s at stripping velocities between 0.22 × 10−2−7x 10−2 m/s with constant feed flow. The measured permeabilities were compared to generally accepted mass transfer correlations. The predicted permeabilities adequately fit the experimental data, indicating that the rate limiting step in the transport of the ion was the diffusion through both aqueous films, feed and stripping, whereas the organic resistance of the membrane was negligible. Furthermore, the proposed model allowed the prediction of the permeability of cadmium for different experimental conditions, which is useful to perform experiments to reduce metal levels in water or other effluents.  相似文献   

10.
The volumetric overall mass transfer coefficients have been measured in a pulsed packed extraction column using diffusion model for the toluene/acetone/water system. The experiments were carried out for both mass transfer directions. The effects of operational variables such as pulsation intensity and dispersed and continuous phases flow rates on volumetric overall mass transfer coefficients have been investigated. The experimental findings indicate that pulsation intensity and mass transfer direction have great influence on volumetric overall mass transfer coefficient. Significant, but weaker, are the effects of continuous and dispersed phase flow rates. The experimental results obtained in the present work are compared with some other types of extraction columns. Finally, two empirical correlations for prediction of the continuous phase overall mass transfer coefficient is derived in terms of Sherwood and Reynolds numbers. Good agreement between prediction and experiments was found for all operating conditions that were investigated.  相似文献   

11.
The main objective of this paper was to evaluate the influence of mass transfer on the photocatalytic efficiency at a low flow rate in the order of several mL per hour. Several continuous flow microchannel reactors have been used to study the degradation of salicylic acid (SA) taken as a model pollutant. The photocatalytic degradation of salicylic acid, under UV illumination of 1.5 mW cm−2, was assessed from the outlet concentration measured by liquid chromatography HPLC. It was shown that the degradation of SA by UV was limited by mass transfer. Numerical simulations have allowed establishing a relationship of the Sherwood number valuable for all the microchannel geometries. Computational fluid dynamics with Comsol Multiphysics is useful for predicting the degradation yield for a given geometry of the microreactor. The best representation of the experimental data is obtained by introducing a kinetic law taking into account mass transfer limitation.  相似文献   

12.
We compared experimental and model data for the facilitated transport of CO2 from a CO2–air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2–air mixture at atmosphere pressure, the permeance reached 1.51E−8 mol/m2 s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.  相似文献   

13.
The current and copper deposit distribution on a metallic fibre (stainless steel, diameter of 2 mm) was studied numerically and experimentally. The experimental copper deposit was measured with an optical microscope and the current distribution was deduced. The influence of electrolysis time on copper deposit distribution was also studied. A typical current tertiary distribution was observed. The experiment with a longer electrolysis time exhibited a larger current variation around the wire. A numerical study of this problem was also carried out. The simulation involved a laminar and turbulent flow solver together with a numerical model for the mass transfer of ionic species due to diffusion, migration and convection. A good correlation was found between simulated and experimental results for experiments with a short electrolysis time. This numerical model was then used to study the influence of the flow velocity and the diffusion coefficient on the current density and on the average mass transfer around a wire a few microns in diameter. The general relation: for 0.02 < Rep < 14.22 and 1000 < Sc < 12,000 was obtained. Comparison with data available in the literature demonstrates good agreement between our model and previous results.  相似文献   

14.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

15.
16.
Most of available gas-liquid mass transfer data in bubble column have been obtained in aqueous media and in liquid batch conditions, contrary to industrial chemical reactor conditions. This work provides new data more relevant for industrial conditions, including comparison of water and organic media, effects of large liquid and gas velocities, perforated plates and sparger hole diameter.The usual dynamic O2 methods for mass transfer investigation were not convenient in this work (cyclohexane, liquid circulation). Steady-state mass transfer of CO2 in an absorption-desorption loop has been quantified by IR spectrometry. Using a simple RTD characterization, mass transfer efficiency and kLa have been calculated in a wide range of experimental conditions.Due to large column height and gas velocity, mass transfer efficiency is high, ranging between 40% and 90%. kLa values stand between 0.015 and and depend mainly on superficial gas velocity. No significant effects of column design and media have been shown. At last, using both global and local hydrodynamics data, mass transfer connection with hydrodynamics has been investigated through kLa/εG and kLa/a.  相似文献   

17.
《Ceramics International》2022,48(15):21856-21867
In this work, ZnO nanowires with high aspect ratio were obtained by fast and simple electrochemical anodization. Morphological, structural and photoelectrochemical characteristics of the synthesized ZnO nanowires were evaluated by using different techniques: field emission scanning electron microscopy, atomic force microscopy, high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–VIS spectroscopy, Mott-Schottky analysis and photoelectrochemical impedance spectroscopy. The synthesized ZnO nanowires presented high roughness and high crystallinity. Besides, surface defects were identified in the sample. The value of the donor density (ND) was in the order of 1019 cm?3 in the dark and 1020 cm?3 under illumination. In addition, the ZnO nanowires presented good photosensibility, with a photocurrent density response 85 times higher than a ZnO compact layer, and lower resistance to charge transfer. The charge transfer processes taking place at the ZnO/electrolyte interface were studied, since these processes strongly influence the photoelectrocatalytic efficiency of the material. According to the results, the charge transfer of holes in the synthesized ZnO nanowires occurs indirectly via surface states. In this regard, surface states may be an important feature for photoelectrocatalytic applications since they could provide lower onset voltages and higher anodic current densities.  相似文献   

18.
In gas-solid reactors, particularly circulating fluidized beds (CFB) it is becoming increasingly more important to be able to predict the conversion and yield of reactant species given the ever rising cost of the reactants and the ever decreasing acceptable level of effluent contaminants. As such, the development and use of predictive models for the reactors is necessary for most processes today. These models all take into account, in some manner, the interphase mass transfer. The model developer, unless equipped with specific experimentally based empirical correlations for the reactor system under consideration, is required to go to the open literature to obtain correlations for the mass transfer coefficient between the solid and gas phases. This is a difficult task at present, since these literature values differ by up to 7 orders of magnitude. The wide variation in the prediction of mass transfer coefficients in the existing literature is credited to flow regime differences that can be identified in the cited literature upon careful inspection.A new theory is developed herein that takes into account the local hydrodynamics. The resulting model is compared with data generated in the NETL cold flow test facility and with values from the literature. The new theory and the experimental data agree quite well, providing a fundamentally based mass transfer model for predictive reactor simulation codes.  相似文献   

19.
Mass transport and surface reactions in microfluidic systems   总被引:1,自引:0,他引:1  
We provide analysis of different regimes of diffusion and laminar flow convection combined with bimolecular surface reactions relevant to biochemical assays performed in microfluidic devices. Analytic solutions for concentration fields are compared to predictions from two-dimensional finite element simulations for the various operation regimes. The analytic and numerical results extend the transport models beyond the models commonly used to interpret results from surface plasmon resonance (SPR) experiments. Particular emphasis is placed on the characterization of transport in shallow microfluidic channels in which the fully developed transport regime dominates rather than the mass transfer boundary layer transport typically encountered in SPR. Under fast reaction and diffusion conditions, the surfaces saturate following moving front kinetics similar to that observed in chromatographic columns. Two key parameters relevant to on-chip biochemical assays and microfluidic sensors are studied and compiled: the capture fraction of the bulk analyte at the surface and the saturation time scale of the reactive surfaces. The physical processes in the different regimes are illustrated with data from the relevant microfluidics literature.  相似文献   

20.
In this study, the mean droplet diameter in the cavity zone and the total mass transfer area of a multi-stage highspeed disperser(HSD) reactor with different packing combinations were measured and evaluated. The effects of rotational speed and packing radius, as well as the packing ring radius and numbers, on the mean droplet diameter and the total mass transfer area were evaluated. A model was established to calculate the mass transfer area in the cavity zone in the HSD reactor, and it was found that the packings contribute 61%–82% of the total mass transfer area. A correlation for predicting the mass transfer area in the packing zone was regressed by the dimensionless analysis method. An enhancement factor based on the mass transfer area in the packing zone was proposed to evaluate the effect of packing combination on mass transfer area. Two optimum packing combinations were proposed in consideration of the mean droplet diameter and the enhancement factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号