首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano-structured PdxPt1−x (x = 0-1) composite catalysts supported on Ti substrate are successfully prepared by electrodeposition method, and the morphology and phase of the catalysts are analyzed by field emission scanning electron microscope (FE-SEM) and X-ray energy dispersion spectroscopy (EDS). The activity and stability of the PdxPt1−x/Ti composite catalysts are assessed for the electrooxidation of alcohols (methanol, ethanol and 2-propanol) in alkaline medium using cyclic voltammetry and chronoamperometry techniques. The results show that the Pd and Pt form PdxPt1−x nano-structured composite catalysts, uniformly distributed on the Ti substrate. The electrocatalytic activity and stability of the PdxPt1−x nanocatalysts depend strongly on the atomic ratios of Pd and Pt. Among the synthesized catalysts, the Pd0.8Pt0.2/Ti displays the best catalytic activity and stability for the electrooxidation reaction of alcohols investigated in alkaline medium under conditions in this study, and shows the potential as electrocatalysts for direct alcohol fuel cells.  相似文献   

2.
Xuguang Li 《Electrochimica acta》2006,51(17):3477-3483
In this work, carbon supported PtxPd1−x (x = 0-1) nanocatalysts were investigated for formic acid oxidation. These catalysts were synthesized by a surfactant-stabilized method with 3-(N,N-dimethyldodecylammonio) propanesulfonate (SB12) as the stabilizer. They show better Pt/Pd dispersion and higher catalytic performance than the corresponding commercial catalysts. Furthermore, the electrocatalytic properties of PtxPd1−x/C were found to depend strongly on the Pt/Pd deposition sequence and on the Pt/Pd atomic ratio. At a lower potential, formic acid oxidation current on co-deposited PtxPd1−x/C catalysts increase with increasing Pd surface concentration. Nanoscale Pd/C is a promising formic acid oxidation catalyst candidate for the direct formic acid fuel cell.  相似文献   

3.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

4.
Electrodeposition of 0.5 μm thick CoxFe1−x (x = 0.33-0.87) films was carried out from a sulfate/chloride plating solution containing saccharin as an organic additive at constant current density and a controlled pH 2.3. The increase of Fe2+ concentrations in plating solution resulted in an increase of Fe-content and tensile stress in CoxFe1−x films, which is accompanied by a decrease of plating rate. Several possible origins for generation of tensile stress include the following: interfacial stress between CoFe films and Cu-substrate, crystal texture and grain size, coalescence and stress evolution during film growth, and hydrogen adsorption/desorption. The adsorption/desorption mechanism of hydrogen seems to be the most likely dominant stress mechanism. The relationship between increase of the tensile stress and decrease of plating rate was discussed.  相似文献   

5.
NiFe2−xBixO4 (x = 0, 0.1, 0.15) nanopowders were synthesized via sol-gel method. The precursor gels were calcined at 773 K in air for 1 h to obtain the pure nanostructured NiFe2−xBixO4 spinel phase. The crystal structure and magnetic properties of the substituted spinel series of NiFe2−xBixO4 have been investigated by means of 57Fe Mössbauer spectroscopy, transmission electron microscopy and alternating gradient force magnetometry. Mössbauer spectroscopic measurements revealed that Bi3+ cations tend to occupy octahedral positions in the structure of the substituted ferrite, i.e., the crystal-chemical formula of the as-prepared nanoparticles may be written as: (Fe)[NiFe1−xBix]O4 (x = 0, 0.1, 0.15), where parentheses and square brackets enclose cations on sites of tetrahedral and octahedral coordination, respectively. Selective area electron diffraction studies provided evidence that the samples of the NiFe2−xBixO4 series, independently of x, exhibit the cubic spinel structure. The values of the saturation magnetization and the coercive field of NiFe2−xBixO4 nanoparticles were found to decrease with increasing degree of bismuth substitution.  相似文献   

6.
A H2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid at room temperature and better tolerance to carbonaceous species.  相似文献   

7.
Physical and electrochemical investigations of vanadium phosphates, Li2xVO(H2−xPO4)2 (0 < x < 2), have been undertaken. H+/Li+ ionic exchange from VO(H2PO4)2 to Li2VO(HPO4)2 leads to grain decrepitation. Further ionic exchange toward formation of Li4VO(PO4)2 lowers the symmetry. As inferred from potentiodynamic cycling correlated to ex situ and in situ X-ray diffraction (XRD), the system Li/Li4VO(PO4)2 shows several phase transformations that are associated with thermodynamical potential hysteresis that span from roughly 15 mV to more than 1.8 V. Small hysteresis are associated with topotactic reactions and with VV/VIV and VIII/VII redox couples. Large potential hysteresis values (>1 V) were observed when oxidation of VIII to VIV is involved.  相似文献   

8.
Negative thermal expansion materials ZrW2−xMoxO8 (0 ≤ x ≤ 2) have been successfully synthesized by the reaction of a mixture of ammonium tungstate and ammonium molybdate with zirconium oxynitrate using a hydrothermal method. Effect of substituted ion Mo on the microstructure, α-to-β and cubic to trigonal phase transition in resulting ZrW2−xMoxO8 powders was examined by the XRD experiments. It was found that the structural phase transition temperature decreased slightly with increasing substituted content. The cubic to trigonal phase transition was also influenced by substituted content. The resulting products decomposed to WO3/MoO3 and ZrO2 as temperature increasing when x ≤ 0.5 and while x > 0.5, the cubic phase transited to trigonal phase. The effect of substituted Mo on the morphology of resulting products was also investigated by SEM experiments.  相似文献   

9.
V. RaghuveerB. Viswanathan 《Fuel》2002,81(17):2191-2197
Attempt has been made to obtain the relationship between the electrophysical and electrochemical properties in order to provide a possible basis for designing new electrode materials for fuel cell applications. The substituted lanthanum cuprates of composition La2−xMxCu1−yM′yO4 (where M=Sr, Ca and Ba; M′=Sb and Ru; 0.0≤x≤0.4 and y=0.1) were used to demonstrate the correlation of the Fermi level and carrier concentration with the methanol oxidation onset potential and activity, respectively. The activity of bulk material is compared with that of the nanocrystalline material prepared by the polymer modified sol-gel method. The nanocrystalline material was characterized by TGA, XRD, SEM, TEM and cyclic voltammetry.  相似文献   

10.
Mullite-type A2M4O9 phases (M = Al, Ga, Fe), representing promising oxygen conducting materials for solid oxide fuel cells (SOFCs), were synthesized using the glycerine- and the EDTA/citric acid synthesis method. For strontium-doped material pure phases could be obtained only by washing the samples after the heating in both synthesis methods. Temperature dependent investigations were carried out to show the influence of the metal atoms on the structural stability and thermal expansion coefficients. Whereas the Sr-free phases show a quasi linear thermal expansion behavior in all three directions up to their incongruent melting points, a discontinuity in the measured range is observed for the investigated strontium doped dibismuth-nonaoxotetrametallate(III) caused by the decomposition into Bi2M4O9, strontium metallates and bismuthoxide. Big single crystals were only observed for the Sr-free compound, of which the structure of Bi2(Ga0.45Fe0.55)4O9 will be presented here in the Bärnighausen tree corresponding mullite-type setting.  相似文献   

11.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

12.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

13.
Perovskite-type ternary oxides with molecular formulae, La2−xSrxNiO4 (0 ≤ x ≤ 1), were prepared by a modified citric acid sol-gel route at 600 °C for their possible use in a direct methanol fuel cell (DMFC). The study was conducted by cyclic voltammetry, chronoamperometry, impedance and anodic Tafel polarization techniques. The results showed that the electrocatalytic activity of the base oxide (x = 0) in 1 M KOH plus 1 M CH3OH at 25 °C increases with x, the observed current densities being 23.6, 47.3, 43.2 and 50.9 mA cm−2 at a scan rate of 10 mV s−1 and E = 0.6 V versus Hg/HgO for oxides with x = 0, 0.25, 0.5 and 1.0, respectively. All the four perovskite anodes used in this study did not indicate any poisoning by the methanol oxidation intermediates/products. The methanol electro-oxidation reaction followed a Tafel slope of ∼2 × 2.303RT/3F (=40 mV decade−1) on each oxide catalyst, regardless of Sr content.  相似文献   

14.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

15.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

16.
The structure and electrochemical properties of LiNixMn2−xO4 cathode materials for lithium ion batteries were studied by the means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), cyclic voltammetry, and galvanostatic charge-discharge tests. The cathodes with different Ni contents (LiNixMn2−xO4, x = 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by a spray-drying method and showed a single-phase spinel structure without any impurity. The amount of Ni has a large effect on the electrochemical characteristics. Capacity values of different voltage ranges (4- and 5-V ranges) change obviously with amount of Ni-doped. Also, the total discharge capacities increase with the Ni content, and all of them have good cycle stability.  相似文献   

17.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

18.
For (Ti1−xVx)2Ni (x = 0.05, 0.1, 0.15, 0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging. Ti1.7V0.3Ni alloy electrode displayed the best high-rate discharge ability of 82.7% at the discharge current density of 240 mA/g.  相似文献   

19.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

20.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号