首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Au nanoparticles (AuNPs) are good quenchers once they closely contact with luminophore. Here we reported a simple approach to obtain enhanced electrogenerated chemiluminescence (ECL) behavior based on Au/CdS nanocomposite films by adjusting the amount of AuNPs in the nanocomposite. The maximum enhancement factor of about 4 was obtained at an indium tin oxide (ITO) electrode in the presence of co-reactant H2O2. The mechanism of this enhancement was discussed in detail. The strong ECL emission from Au/CdS nanocomposites film was exploited to determine H2O2. The resulting ECL biosensors showed a linear response to the concentration of H2O2 ranging from 1.0 × 10−8 to 6.6 × 10−4 mol L−1 with a detection limit of 5 nmol L−1 (S/N = 3) and good stability and reproducibility.  相似文献   

2.
In this work, Ni(OH)2 nanoplates grown on the Cu substrate were synthesized and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Then a novel Cu-Ni(OH)2 modified glass carbon electrode (Cu-Ni(OH)2/GCE) was fabricated and evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and typical amperometric response (i-t) method. Exhilaratingly, the Cu-Ni(OH)2/GCE shows significant electrocatalytic activity toward the reduction of H2O2. At an applied potential of −0.1 V, the sensor produces an ultrahigh sensitivity of 408.1 μA mM−1 with a low detection limit of 1.5 μM (S/N = 3). The response time of the proposed electrode was less than 5 s. What's more, the proposed sensor displays excellent selectivity, good stability, and satisfying repeatability.  相似文献   

3.
[PFeW11O39]4− (PFeW11) supported on the surface of 3-aminopropyl(triethoxy)silane modified silica gel was synthesized and used as a bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The electrochemical behavior of the modified electrode was investigated. Cyclic voltammetry studies showed that the PFeW11 on the electrode surface sustained the same electrochemical properties as that of the PFeW11 in solution. The preparation of chemically modified electrode is simple and quiet reproducible using inexpensive material. The modified electrode had high electrocatalytic activity toward H2O2 reduction and it was successfully applied as an electrochemical detector to monitor H2O2 in flow injection analysis (FIA). The electrocatalytic peak current was found to be linear with the H2O2 concentration in the range 10-200 μmol L−1 with a correlation coefficient of 0.998 and a detection limit (3σ) of 7.4 μmol L−1 H2O2. The electrode has the remarkable advantage of surface renewal owing to bulk modification, as well as simple preparation, good mechanical and chemical stability and reproducibility.  相似文献   

4.
Mn3O4/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn3O4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn3O4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn3O4/graphene nanocomposites exhibited a high specific capacitance of 175 F g−1 in 1 M Na2SO4 electrolyte and 256 F g−1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn3O4/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn3O4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.  相似文献   

5.
The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on mesoporous Al2O3 (meso-Al2O3) film modified glassy carbon (GC) electrode. Meso-Al2O3 shows significant promotion to the direct electron-transfer of Hb, thus it exhibits a pair of well defined and quasi-reversible peaks with a formal potential of −0.345 V (vs. SCE). The electron-transfer rate constant (ks) is estimated to be 3.17 s−1. The immobilized Hb retains its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H2O2) and nitrite (NO2). Under the optimized experimental conditions, the catalytic currents are linear to the concentrations of H2O2 and NO2 in the ranges of 0.195-20.5 μM and 0.2-10 mM, respectively. The corresponding detection limits are 1.95 × 10−8 M and 3 × 10−5 M (S/N = 3). The resulting protein electrode has high thermal stability and good reproducibility due to the protection effect of meso-Al2O3. Ultraviolet visible (UV-vis) absorption spectra and reflection-absorption infrared (RAIR) spectra display that Hb keeps almost natural structure in the meso-Al2O3 film. The N2 adsorption-desorption experiments show that the pore size of meso-Al2O3 is about 14.4 nm, suiting for the encapsulation of Hb (average size: 5.5 nm) well. Therefore, meso-Al2O3 is an alternative matrix for protein immobilization and biosensor preparation.  相似文献   

6.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

7.
This work demonstrates that iron-enriched natural zeolitic volcanic tuff (Paglisa deposit, Cluj county, Transilvania, Romania) resulting from a previous use as adsorbent in wastewater treatment can be recycled into effective electrode modifier applied to the electrocatalytic detection of hydrogen peroxide. After physico-chemical characterization of tuff samples using various techniques such as chemical analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, BET analysis and X-ray photoelectron spectroscopy, the electrochemical response of the iron-enriched zeolites was studied on the basis of solid carbon paste electrodes modified with these samples. The results indicate that iron centers in the zeolite are electroactive and that they act as electrocatalysts in the voltammetric and amperometric detection of H2O2. Best performance was achieved in phosphate buffer at pH 7, showing a sensitivity of 0.57 mA M−1 cm−2, a detection limit down to 60 μM, and a linear domain up to 100 mM H2O2.  相似文献   

8.
Graphene was prepared successfully by introducing -SO3 to separate the individual sheets. TEM, EDS and Raman spectroscopy were utilized to characterize the morphology and composition of graphene oxide and graphene. To construct the H2O2 biosensor, graphene and horseradish peroxidase (HRP) were co-immobilized into biocompatible polymer chitosan (CS), then a glassy carbon electrode (GCE) was modified by the biocomposite, followed by electrodeposition of Au nanoparticles on the surface to fabricate Au/graphene/HRP/CS/GCE. Cyclic voltammetry demonstrated that the direct electron transfer of HRP was realized, and the biosensor had an excellent performance in terms of electrocatalytic reduction towards H2O2. The biosensor showed high sensitivity and fast response upon the addition of H2O2, under the conditions of pH 6.5, potential −0.3 V. The time to reach the stable-state current was less than 3 s, and the linear range to H2O2 was from 5 × 10−6 M to 5.13 × 10−3 M with a detection limit of 1.7 × 10−6 M (S/N = 3). Moreover, the biosensor exhibited good reproducibility and long-term stability.  相似文献   

9.
Yang Liu 《Electrochimica acta》2008,53(8):3296-3304
Co3O4/RuO2·xH2O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO3)2·6H2O and RuCl3·0.5H2O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 °C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m2 g−1. The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 °C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM).  相似文献   

10.
A spinel LiMn2O4/C composite was synthesized by hydrothermally treating a precursor of manganese oxide/carbon (MO/C) composite in 0.1 M LiOH solution at 180 °C for 24 h, where the precursor was prepared by reducing potassium permanganate with acetylene black (AB). The AB in the precursor serves as the reducing agent to synthesize the LiMn2O4 during the hydrothermal process; the excess of AB remains in the hydrothermal product, forming the LiMn2O4/C composite, where the remaining AB helps to improve the electronic conductivity of the composite. The contact between LiMn2O4 and C in our composite is better than that in the physically mixed LiMn2O4/C material. The electrochemical performance of the LiMn2O4/C composite was investigated; the material delivered a high capacity of 83 mAh g−1 and remained 92% of its initial capacity after 200 cycles at a current density of 2 A g−1, indicating its excellent rate capability as well as good cyclic performance.  相似文献   

11.
Aggregates of gold nanoparticles (AuNPs) that mediate the assembly of manganese dioxide nanoparticles (nano-MnO2) for hydrogen peroxide (H2O2) amperometric sensing have been developed. The aggregates were prepared by directly mixing citric-capped AuNPs and poly(allylamine hydrochloride) (PAH)-capped nano-MnO2 using an electrostatic self-assembly strategy. The prepared sensor exhibited excellent electrochemical behaviors and a wide linear range from 7.80 × 10−7 to 8.36 × 10−4 M with a detection limit of 4.68 × 10−8 M (S/N = 3) because of the synergistic influence of excellent catalytic ability of MnO2 and good electrical conductivity of AuNPs. In addition, its applicability to practical samples for measuring H2O2 in toothpastes has obtained a satisfactory result. Due to the ease of preparation and excellent properties of the sensor, indicating the MnO2-AuNP material may be a potential H2O2 sensor.  相似文献   

12.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

13.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

14.
Fabrications of micro-dot electrodes of LiCoO2 and Li4Ti5O12 on Au substrates were demonstrated using a sol-gel process combined with a micro-injection technology. A typical size of prepared dots was about 100 μm in diameter, and the dot population on the substrate was 2400 dots cm−2. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were characterized with scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy, and cyclic voltammetry. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were evaluated in an organic electrolyte as cathode and anode for lithium micro-battery, respectively. The LiCoO2 micro-dot electrode exhibited reversible electrochemical behavior in a potential range from 3.8 to 4.2 V versus Li/Li+, and the Li4Ti5O12 micro-dot electrode showed sharp redox peaks at 1.5 V.  相似文献   

15.
The paper reports the use of La2O3 and ZrO2 co-doping as a composite sintering aid for the fabrication of Tm:Y2O3 transparent ceramics. Two groups of experiments were conducted for investigating the influences of composite sintering aids on the microstructures and the optical properties of Tm:Y2O3 transparent ceramics in contrast to single La3+ and single Zr4+ doped Tm:Y2O3. Samples with composite sintering aids could realize fine microstructures and good optical properties at relatively low sintering temperatures. Grain sizes around 10 μm and transmittances close to theoretical value at wavelength of 2 μm were achieved for the 9 at.% La3+, 3 at.% Zr4+ co-doped samples sintered at 1500-1600 °C. The influences of the composite sintering aids on the emission intensities and the phonon energies of Tm:Y2O3 ceramics were also investigated.  相似文献   

16.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

17.
Ramsdellite Li2Ti3O7 was first synthesized via sol-gel process with good crystallity of an average particle size of 0.175 μm. The product was thoroughly investigated as a lithium intercalation compound, and as an active anode material in asymmetric supercapacitors coupling with activated carbon as cathode. Lithium intercalation reactions were found occurring at 1.32 and 1.62 V versus Li/Li+, respectively. A reversible specific capacity of 150 mA h g−1 at 1C was obtained on Li2Ti3O7 electrode in a nonaqueous electrolyte. The charge current was found to strongly influence the anodic discharge capacity in the asymmetric cell. The capacity retention at 10C charge-discharge rate was found to be 75.9% in comparison with that at 1C.  相似文献   

18.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

19.
A composite of Sc2W3O12/Cu where Sc2W3O12, the core, is coated by the Cu shell was synthesized using simple electroless plating method. As-prepared Sc2W3O12/Cu composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and thermomechanical analyzer (TMA) techniques. The study results show that the Pd-Sn activator was successfully formed on the surface of Sc2W3O12 after the sensitization and activation. In the electroless plating process, Cu nanocrystals formed firstly, and then grew together to form a continuous coating. Sc2W3O12/Cu core-shell composites exhibit a negative linear coefficient of thermal expansion CTE = −4.47 × 10−6 °C−1 from room temperature to 200 °C.  相似文献   

20.
Meldola blue immobilized on a new SiO2/TiO2/graphite composite was applied in the electrocatalytic oxidation of NADH. The materials were prepared by the sol-gel processing method and characterized by several techniques including scanning electronic microscopy coupled to energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electronic microscopy (HRTEM). Si and Ti mapping profiles on the surface showed a homogeneous distribution of the components. Ti2p binding energy peaks indicate that the formation of Si-O-Ti linkage is presumably the responsible for the high rigidity of the matrices. The good electrical conductivity presented by the composites (5 and 11 S cm−1) can be related to a homogeneous distribution of graphite particles observed by TEM. After the materials characterization, a SiO2/TiO2/graphite electrode was prepared and some chemical modifications were performed on its surface to promote the adsorption of meldola blue. The resulting system presented electrocatalytic properties toward the oxidation of NADH, decreasing the oxidation potential to −120 mV. The proposed sensor showed a wide linear response range from 0.018 to 7.29 mmol l−1 and limit of detection of 0.008 mmol l−1. SiO2/TiO2/graphite has shown to be a promising material to be used as a suitable support in the construction of new electrochemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号