首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most non-metalized Salen-type ligands form passivation thin films on electrode surfaces upon electrochemical oxidation. In contrast, the H2(3-MeOSalen) forms electroactive polymer films similarly to the corresponding nickel complex. There are no details of electrochemistry, doping mechanism and charge transfer pathways in the polymers of pristine Salen-type ligands. We studied a previously uncharacterized electrochemically active polymer of a Salen-type ligand H2(3-MeOSalen) by a combination of cyclic voltammetry, in situ ultraviolet–visible (UV–VIS) spectroelectrochemistry, in situ electrochemical quartz crystal microbalance and Fourier Transform infrared spectroscopy (FTIR) spectroscopy. By directly comparing it with the polymer of a Salen-type nickel complex poly-Ni(3-MeOSalen) we elucidate the effect of the central metal atom on the structure and charge transport properties of the electrochemically doped polymer films. We have shown that the mechanism of charge transfer in the polymeric ligand poly-H2(3-MeOSalen) are markedly different from the corresponding polymeric nickel complex. Due to deviation from planarity of N2O2 sphere for the ligand H2(3-MeOSalen), the main pathway of electron transfer in the polymer film poly-H2(3-MeOSalen) is between π-stacked structures (the π-electronic systems of phenyl rings are packed face-to-face) and C-C bonded phenyl rings. The main way of electron transfer in the polymer film poly-Ni(3-MeOSalen) is along the polymer chain, while redox processes are ligand-based.  相似文献   

2.
Electrogenerated polymers based on copper salen-type complexes were characterised electrochemically and by in situ UV-vis and ex situ EPR spectroscopy. The films, poly[Cu(salen)] and poly[Cu(saltMe)], exhibit reversible oxidative electrochemical behaviour in a wide potential range (0.0-1.5 V). Different regimes for charge transport behaviour are accessed by manipulation of film thickness and experimental time scale: thin films (surface concentration, Γ < ca. 80 nmol cm−2) show thin-layer/surface behaviour in the scan rate range used (0.020-2.0 V s−1), whereas thicker polymers (Γ > ca. 90 nmol cm−2) exhibit a changeover from thin-layer to diffusion control regime at a critical scan rate that depends on polymer and film thickness: 0.15-0.20 V s−1 for poly[Cu(salen)], 90 < Γ < 130 nmol cm−2 and 0.20-0.30 V s−1 for poly[Cu(saltMe)], 170 < Γ < 230 nmol cm−2.UV-vis and EPR spectroscopies have allowed the characterisation of electronic states in the reduced and oxidised forms. The role of the copper atom during film oxidation was probed by combining UV-vis data with EPR on copolymers of the copper and nickel complexes. Data from both techniques are consistent and indicate that polymerisation and redox switching are associated with ligand-based processes. EPR of Ni-doped Cu polymers provided evidence for the non-involvement of the metal centre in polymer oxidation; like the analogous nickel polymers, copper polymers behave like delocalised π-system (‘conducting’) rather than discrete site (‘redox’) polymers.  相似文献   

3.
Ultrathin polymeric films consisting of poly(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl) (F8) blended with poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) grown onto PEDOT:PSS/ITO/PET were investigated by X‐ray photoelectron spectroscopy (XPS), depth‐profiling XPS, reflection electron energy loss spectroscopy (REELS) and angle‐dependent X‐ray absorption spectroscopy (XAS) to gain information on the films' electronic, order and interface properties. AFM studies provide valuable information on the films' nanotopographical properties and homogeneity. Spectroscopic ellipsometry and photoluminescence spectroscopy were used also to obtain information on the optoelectronic properties. Well‐ordered films were observed from the XAS analysis, measured at the sulfur K absorption edge. XPS measurements demonstrated that the surface composition of the polymer thin films prepared by a spin‐coating wet‐chemical deposition method matches the expected F8:F8BT blend stoichiometry. The interfacial properties were studied through an argon ion sputtering process coupled to the XPS acquisition, showing an enhancement of oxygen components at the interface. The films' inhomogeneity was verified by AFM images and analysis. We obtained a value of 3.1 eV as the electronic bandgap of the F8:F8BT film from REELS data, whereas analysis of the spectroscopic ellipsometry spectra revealed that the optical bandgap of F8:F8BT has a value of 2.4 eV. A strong green emission was obtained for the produced films, which is in agreement with the expected emission due to the 1:19 ratio of the F8 and F8BT blended polymers. © 2018 Society of Chemical Industry  相似文献   

4.
Pd–Ni alloys with different compositions (i.e. Pd2Ni, PdNi, PdNi2) dispersed on multi-walled carbon nanotubes (MWCNTs) are prepared by ultrasonic-assisted chemical reduction. The X-ray diffraction (XRD) patterns indicate that all Pd and Pd–Ni nanoparticles exist as Pd face-centered cubic structure, while Ni alloys with Pd. The transmission electron microscopy (TEM) images show the addition of nickel decreases the particle size and improves the dispersion. The X-ray photoelectron spectroscopy (XPS) spectra demonstrate the electronic modification of Pd by nickel doping. The electrochemical measurements reveal that the PdNi catalysts have better catalytic activity and stability for formic acid electrooxidation, among them PdNi/MWCNTs is the best. The performance enhancement is ascribed to the increase of electroactive surface area (EASA) and nickel doping effect which might modify the electronic structure.  相似文献   

5.
In this work, the incorporation of a commercial zinc phosphate pigment into polypyrrole (PPy) matrix during its electrochemical synthesis on mild steel was studied in order to produce PPy/zinc phosphate composite films as a protective layer against corrosion. Potassium nitrate, oxalic acid, tosylic acid and sodium salicylate solutions were used as electrolytes in cyclic voltammetry and galvanostatic polarisation studies. The influence of synthesis parameters such as nature, concentration, pH and stirring of the electrolyte on the degree of incorporation of the pigment was investigated, as well as time and current densities of the electropolymerisation process. Their influence on current efficiency was also evaluated. Sodium salicylate was the only electrolyte to show a high current efficiency in the polymerisation reaction and to yield a composite film with a reasonable amount of zinc phosphate. In this electrolyte medium, X-ray photoelectron spectroscopy (XPS) analysis showed that zinc phosphate may be found in the polymeric matrix: (i) as a conductive ionic minority form and (ii) as a non-conductive non-ionic majority one for higher incorporation levels. Scanning electron microscopy (SEM) showed that zinc phosphate is heterogeneously distributed on the surface of the polymer.  相似文献   

6.
Ultra-thin films (1 and 3 monolayers) of Pd were deposited on the Au(111) surface and then characterized by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger spectroscopy (XAES), low-energy electron diffraction (LEED), and X-ray photoelectron diffraction (XPD). For the 1 ML Pd film annealed at 450 °C, XPS and XAES results indicated that Pd had diffused into the Au substrate. For the 3 ML Pd film deposited at room temperature, the comparison between experimental and theoretical XPD results indicated approximately 30% of the surface was formed by 2 ML Au layers, and 70% of the surface, by 1 ML Au layers.  相似文献   

7.
Homogeneous and strongly adherent polypyrrole (PPy) films were electrochemically synthesized on iron electrodes in sodium tartrate (Na2C4O6H4 0.2 M) aqueous solution. This one step pyrrole electropolymerization process has been successfully achieved under different electrochemical techniques, such as potentiodynamic, galvanostatic and potentiostatic modes. During the first stage of the electrochemical process the tartrate counterion slows down the iron dissolution by leading to the formation of a passivation layer on the working electrode surface, and the pyrrole electropolymerization takes place. The electrosynthesized polymer deposit has been characterized by several microscopic and spectroscopic techniques. Any iron traces have been detected by X-ray photoelectron spectroscopy (XPS) on the outer side of the PPy films, which confirms the compactness and the homogeneity of the polymeric coating. Scanning electronic microscopy (SEM) imaging showed uniform and compact PPy coatings with cauliflower-like structure. Infra-red (IR) and Raman spectroscopies proved that the obtained PPy films have the same vibrational properties as those electrodeposited on noble Pt plates.  相似文献   

8.
Nickel oxide films were synthesized by electrochemical precipitation of Ni(OH)2 followed by heat-treatment in air at various temperatures (200-600 °C). Their structure and electrochemical properties were studied by cyclic voltammetry, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). XRD results showed that the nickel oxide obtained at 250 °C or above has a crystalline NiO structure. The specific capacitance of the oxide depends on the heat-treatment temperature, showing a maximum value at 300 °C. XAS results revealed that the non-stoichiometric nickel oxide (Ni1−xO) approached the stoichiometric NiO structure with increasing heat-treatment temperature due to the defect healing effect. The defective nature of the nickel oxide could be utilized to improve its specific capacitance for supercapacitor application.  相似文献   

9.
Two chiral manganese(III) salen catalysts, bearing different chiral diamine bridges, were anchored by direct axial coordination of the metal centre onto the phenolate groups of a modified commercial activated carbon. The modification of the activated carbon was achieved by reaction between sodium hydroxide and surface phenol groups giving rise to phenolate groups (CoxONa), which were characterised by XPS, TG and TG-IR. Characterisation of immobilised manganese(III) salen catalysts onto CoxONa material by XPS, ICP-AES and TG-IR clearly point to reaction between carbon surface phenolate groups and the manganese(III) complexes through axial coordination of the metal centre to these groups.These materials were active and enantioselective in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0 °C using, respectively, m-CPBA/NMO and NaOCl. Only for α-methylstyrene comparable asymmetric inductions were found in the epoxide as the homogeneous phase reactions and catalyst reuse led to no significant loss of catalytic activity and enantioselectivity.  相似文献   

10.
Catalytic properties of Pd supported on two polymers of similar basicity but different electrical properties, a π-conjugated conducting-polypyrrole (PPY) and the electro-inactive poly(4-vinylpyridine) (PVP) have been studied in the hydrogenation of acetophenone (ACT) and compared with that of γ-Al2O3 supported Pd. Experimental evidences provided by several techniques: X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission electron (TEM) microscopy, X-ray diffraction (XRD) and temperature programmed desorption (TPD) of hydrogen show that both polymers PVP and PPY exhibited ability to stabilize finely dispersed palladium nanoparticles, better this ability is offered by electro-inactive PVP. Palladium nanoparticles within a narrow range of size 2–20nm as well as very high surface concentration of Pd (22.2at %) in agglomerates were established in the latter polymer supported catalysts. Distinctly lower surface concentration of Pd (1.8at %) and crystalline Pd particles of dimension within a wide range, from 5nm up to ca. 1500nm appeared in the matrix of electroactive polymer – PPY. The hydrogenation of ACT to ethylbenzene (ETB) via 1-phenylethanol (ACP) (as the intermediate) proceeded over all studied catalysts. The effects of solvents, Pd content, ACT concentration and the additives of ACP, ETB were also studied. The catalytic properties of Pd/PPY in terms of activity and selectivity significantly differ from those of Pd/PVP and Pd/Al2O3. Both latter catalysts offered high activity and selectivity in the C=O in ACT to C–OH reduction. Definitely lower activity and higher tendency towards the hydrogenolysis of C–OH in ACP reflected Pd/PPY catalysts. Such unprofitable properties of Pd/PPY can be attributed to relatively strong adsorption of all organic reactant ACT, ACP, ETB. A competition of the ACP and ETB with the ACT occurred only in the case of Pdcentres created in the electroactive polymer, whereas Pd sites dispersed in the electro-inactive PVP similarly as the ones in Al2O3 exhibited definitely more substrate – ACT specific character.  相似文献   

11.
Poly(N-vinyl-carbazole) (PVK) thin films doped with bromine has been studied by scanning electron microscopy, X-ray diffraction, infrared absorption, X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), optical transmission (visible, near ultra violet) and conductivity measurements. The polymer has been doped at room temperature and at 373 K. It is shown by ESR, XPS and optical measurements that a charge transfer complex (CT-complex) is formed between PVK and Br. However, if some bromine acts as dopant of the polymer there is another bromine contribution, which corresponds to bromine covalently bonded to PVK and some only adsorbed. It is also shown by ESR that there is not only polymer doping by bromine but also some partial polymer degradation. Therefore, it can be said that the optimum doping condition of PVK thin films with bromine has been shown to be room temperature post-doping.  相似文献   

12.
Polyaniline (PAni) films with similar electroactivity were potentiodynamically grown at selected different scan rates and number of cycles. Palladium particles were incorporated in the electroactive polymer by electroless precipitation. The polymeric matrix morphology and its effect on the distribution and size of Pd particles was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was observed that the dispersion of metal clusters was imparted by the nature of the polymer matrix. The results allowed to state a correlation between the polymer topography and the size and spatial distribution of the catalytic particles.  相似文献   

13.
Xinyang Li 《Polymer》2010,51(4):860-17841
In this work, a new way for enzyme immobilization was explored and properties of the enzyme immobilized on different polymer films were investigated. In the process, a polystyrene-based diazonium salt (PS-DAS) was synthesized and used as molecular adhesive to immobilize β-glucosidase on the polymeric supports (films of polyethylene, polypropylene and poly(ethylene terephthalate)). The immobilization of β-glucosidase on the polymer surfaces was achieved by sequential depositions of a piece of the polymer films in PS-DAS and the enzyme solutions. The surface modification was investigated by X-ray photoelectron spectroscopy (XPS), water contact angle measurement, and atomic force microscopy (AFM). The activity of the immobilized β-glucosidase was evaluated by measuring its enzymatic activity to the hydrolysis of p-nitrophenyl-β-d-glucopyranoside (pNPG). The optimized reaction conditions (such as pH and temperature), thermal stability, and reusability of the immobilized enzyme on PE films were assayed by using the enzyme-catalyzed reaction. Results show that the polymeric diazonium salt is firmly adhered on the polymer surfaces and the modified surfaces can react with the enzyme to form covalent bonds. The immobilized enzyme shows changes in the optimized pH and temperature for the hydrolysis reaction catalyzed by β-glucosidase. The kinetic parameter (Km) of the immobilized β-glucosidase is lower than that of its free counterpart. The immobilized enzyme shows significant enhancement in the thermal stability and reasonable reusability. This new approach can be used as a simple and versatile method for protein immobilization.  相似文献   

14.
Steel samples were passivated in 0.1 M NaOH solutions at 0.3 V vs. Ag/AgCl (3 M KCl) and then poly(allylamine) derivatized with osmium pyridine-bipyridine-chloride complex and poly-(vinylsulfonate) were sequentially self-assembled electrostatically layer-by-layer. The resulting electrodes were examined by cyclic voltammetry, ellipsometry, and X-ray Photoelectron Spectroscopy (XPS). These studies demonstrate the formation of a redox polyelectrolyte multilayer onto the passive film protecting the ferrous metal. As the number of deposited polyelectrolyte layers increases there is an increase in the measured thickness of the self-assembled film. The rate of thickness growth in osmium polymer film with the number of deposition cycles is slower for films thinner than ∼30 nm. Cyclic voltammetry shows that the electron transfer rate to the outer sphere osmium complex tethered to the polymer backbone is much slower for the multilayer on passive iron than on gold surfaces. This is in agreement with the well-known behavior of soluble redox couples on passive metals and with electrochemical tunelling spectroscopy.  相似文献   

15.
A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10?5 and 6.76 × 10?4 S cm?1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.  相似文献   

16.
Poly-3-amino-5-mercapto-1,2,4-triazole/TiO2 (p-AMTA/TiO2) composite was effectively synthesized over the copper surface by cyclic voltammetric technique and used as a protective coating against corrosion. The resulting polymeric composite was characterized using Fourier transform infrared spectroscopy. The presence of TiO2 particles in the polymer matrix was substantiated from X-ray diffraction pattern and energy-dispersive X-ray spectrum. The uniform dispersion of TiO2 particles in the polymeric matrix was confirmed by the scanning electron microscope images. The protective effect of composite coating was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization methods in 3.5 % NaCl medium. Impedance measurements showed that charge transfer resistance (R ct) values increased for polymeric composites which suggested the enhanced corrosion protection of copper. Further, the decrease in corrosion current density (i corr) values and shifting of corrosion potential (Ecorr) toward the cathodic direction confirmed the anticorrosive behavior of the polymeric composite. The reason for the higher protection of polymeric composite may be due to the well-dispersed TiO2 particles in the polymer matrix exhibiting the enhanced barrier properties to protect copper surface from corrosion. The defects in the coatings can be reduced by embedded TiO2 particles in the pores of the polymeric films to enhance the corrosion protection, consequently.  相似文献   

17.
Polypyrrole-coated polystyrene latex particles bearing N-carboxyl functional groups (PS@PPyCOOH) were prepared by the in-situ copolymerization of pyrrole (Py) and the active carboxyl-functionalized pyrrole (PyCOOH) in the presence of 390 nm diameter-sized polystyrene (PS) latex particles. Uncoated PS particles were prepared by emulsion polymerization of styrene. The initial comonomer fractions (in mol%) were 25/75, 50/50, 75/25 and 100/0 for pyrrole and PyCOOH, respectively. The PS@PPyCOOHx particles, where x stands for the initial molar fraction of PyCOOH (x = 0, 25, 50 or 75%), were characterized in terms of particle size, surface morphology, chemical composition and electrochemical redox activity using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), FTIR, TGA and cyclic voltammetry respectively. TEM showed an increase of the latex particle diameter after coating by the conducting polymer layer, from 390 nm for uncoated PS to 430 nm for PS@PPyCOOH50 particles, allowing an estimation of the PPyCOOH shell thickness to 20 nm. FTIR and XPS detected PyCOOH repeat units at the surface of the latex particles, indicating that this monomer had indeed copolymerized with pyrrole. The core-shell structure of the PS@PPyCOOHx particles was confirmed by etching the polystyrene core in THF, leading to the formation of hollow conducting polymer capsules. Positively charged CdS nanoparticles were electrostatically assembled onto the surface of PS@PPyCOOH50 particles, as a function of pH. It was found that, contrarily to unfunctionalized PPy-coated latex particles, PS@PPyCOOH50 particles could be evenly decorated with stabilized CdS nanoparticles, at pH 5.The films of the PS@PPyCOOH@CdS-coated ITO electrodes are shown to be electroactive and electrochemically stable.  相似文献   

18.
A commercial zinc phosphate pigment was incorporated into polypyrrole (PPy) matrix during its electrochemical synthesis in order to improve the corrosion protection of polypyrrole on AISI 1010 steel. PPy/zinc phosphate composite films were synthesised in sodium salicylate medium with high current efficiency and containing 10% by weight of zinc and 4% by weight of phosphate. The influence of stirring and concentration of the electrolyte on the degree of pigment incorporation were investigated, as well as polymerisation time and applied current density. The morphology of the films was determined by scanning electron microscopy (SEM) and the distribution of pigment in the polymeric matrix was carried out by X-ray photoelectron spectroscopy (XPS). The PPy and PPy/zinc phosphate films were submitted to salt spray corrosion test, weight loss test and to electrochemical measurements like corrosion potential with time. In all tests, the composite films showed an enhancement in its protective action in comparison with PPy films.  相似文献   

19.
Nanostructured un- and In-doped SnS thin films were deposited on fluorine-doped tin oxide (FTO) substrates via an electrochemical deposition technique. The deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), photoluminescence (PL) spectroscopy and UV–visible spectroscopy. The XRD patterns demonstrated that all deposited thin films are made of polycrystalline SnS particles. The AFM images illustrated a distinct change in the surface topography of the SnS thin films due to In-doping. The PL spectra showed two blue emission peaks and a green emission peak for all samples. Also, they highlighted a PL peak for the In-doped thin films. The incorporation of In-dopant leads to enhance in the optical absorption of SnS lattice. The optical energy band gap (Eg) of the deposited thin films was estimated using UV–vis spectroscopy, which indicated that In-doping decreases the Eg value of SnS thin films by creating defect levels. The photocurrent results demonstrated a higher photocurrent response and photocurrent amplitude for the In-doped SnS samples relative to the un-doped SnS thin film. The Mott–Schottky analysis revealed p-type conductivity for all samples. In addition, the carrier concentration of SnS was increased after In doping. The EIS spectra declared that In-doping improves the rate of charge transfer for SnS thin films. The charge transfer resistance of In-doped SnS decreased compared to the undoped SnS thin film. Finally, according to the J-V characteristics, the conversion efficiency of the In-doped SnS thin films was higher than that of the un-doped SnS sample. Therefore, the optical and electrical performance of SnS thin films were improved due to In-doping.  相似文献   

20.
The structure, composition and bonding of carbon nitride films created by pulsed laser deposition in combination with radio-frequency discharge for nitrogen activation were studied by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and by Raman spectroscopy for various deposition conditions. XPS measurements revealed a maximum N/C of ∼0.5 and an increased number of N-sp3C bonds for lower N/C values. FTIR and Raman spectra indicate the presence of a polymeric phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号