首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated carbons were produced from waste tires and their characteristics were investigated. Rubber separated from waste tires was first carbonized at 500 °C in N2 atmosphere. Next, the obtained chars were activated with steam at 850 °C. As a result, fairly mesoporous activated carbons with mesopore volumes and BET surface areas up to 1.09 cm3/g and 737 m2/g, respectively, were obtained. To further improve the porous properties of the activated carbons, the char was treated with 1 M HCl at room temperature for 1 day prior to steam activation. This treatment increased mesopore volumes and BET surface areas of the activated carbons up to 1.62 cm3/g and 1119 m2/g, respectively. Furthermore, adsorption characteristics of phenol and a dye, Black 5, on the activated carbon prepared via acid treatment were compared with those of a commercial activated carbon in the liquid phase. Although the prepared carbon had a larger micropore volume than the commercial carbon, it showed a slightly lower phenol adsorption capacity. On the other hand, the prepared carbon showed an obviously larger dye adsorption capacity than the commercial carbon, because of its larger mesopore volume.  相似文献   

2.
Low surface area activated carbon derived from compact mesocarbon microbeads (MCMB2010) was synthesized using a lower amount of KOH (1:1 weight ratio of KOH to MCMB) than normally used followed by electrochemical activation. The specific capacitance of the activated carbon heat treated at between 650 and 900 °C was increased up to ca. 118 F/cc (half cell base, 750 °C-heat treated sample) after electrochemical activation, even with a low surface area carbon (<50 m2/g). The morphology of low surface area activated MCMB determined by FE-SEM showed a smooth carbon surface without pores. The charge/discharge profiles were similar to those of conventional activated carbon. The specific capacitance of the activated samples increased with increasing heat treatment up to 850 °C after electrochemical activation. However, it was lower for the sample heat treated at 900 °C.  相似文献   

3.
Malaysian Selantik low-rank coal (SC) was used as a precursor to prepare a form of mesoporous activated carbon (SC-AC) with greater surface area (SA) via a microwave induced KOH-activation method. The characteristics of the SC and SC-AC were evaluated by the iodine number, ash content, bulk density, and moisture content. The structure and surface characterization was carried out using pore structure analysis (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), elemental analysis (CHNS), thermogravimetric analysis (TGA), and determination of the point of zero charge (pHPZC). These results signify a mesoporous structure of SC-AC with an increase of ca. 1160 times (BET SA=1094.3 m2·g-1) as compared with raw SC without activation (BET SA=1.23 m2·g-1). The adsorptive properties of the SC-AC with methylene blue (MB) was carried out at variable adsorbent dose (0.2-1.6 g·L-1), solution pH (2-12), initial MB concentrations (25-400 mg·L-1), and contact time (0-290 min) using batch mode operation. The kinetic profiles follow pseudo-second order kinetics and the equilibrium uptake of MB conforms to the Langmuir model with a maximum monolayer adsorption capacity of 491.7 mg·g-1 at 303 K. Thermodynamic functions revealed a spontaneous endothermic adsorption process. The mechanism of adsorption included mainly electrostatic attractions, hydrogen bonding interaction, and π-π stacking interaction. This work shows that Malaysian Selantik low-rank coal is a promising precursor for the production of low-cost and efficient mesoporous activated carbon with substantive surface area.  相似文献   

4.
Hsin-Yu Liu 《Carbon》2005,43(3):559-566
Mesoporous carbon was prepared from resol-type phenol-formaldehyde resin using mesoporous silica as template. By filling the resin into the pores of the template, followed by resin carbonization and template dissolution, mesoporous carbon preparation can be significantly simplified. Small-angle X-ray diffraction reflected the long-range ordering of the pores in the carbon. TEM and N2-adsorption analysis showed that the carbon contained mesopores of different sizes and a high proportion of micropores. Electrochemical cyclic voltammetry was conducted in H2SO4 to examine the surface accessibility of the carbon for double layer formation. Microporous activated carbon, also from the resol resin, was prepared for comparison. Although the pore sizes are different, the double-layer capacitances per unit area for both carbons are similar at low potential sweep rates. However, the capacitance decline with the sweep rate was less significant for the mesoporous carbon. Upon gasification of the carbons to increase their surface area, the ultimate capacitance per unit carbon area was enhanced and the enhancement was slightly larger for the mesoporous carbon. It is suggested that the presence of mesopores has facilitated the electrolyte migration into carbon interior. A two-electrode capacitor assembled with the mesoporous carbon was shown to have a small resistance and still exhibited a capacitive behavior at high potential sweep rates.  相似文献   

5.
Polystyrene-based activated carbon spheres (PACSK) with high surface area were prepared through KOH activation. Effects of the carbonization temperature and the ratio of KOH to carbon spheres (CS) on the textural structure, hardness and yield of the resultant PACSK were studied, and their adsorption to dibenzothiophene (DBT) were investigated. The as-prepared PACSK exhibited a high surface area (up to 2022 m2/g), large total pore volume (≥ 0.78 cm3/g), superior mechanical hardness and high adsorption capacity (ca. 153 mg/g). With the increase of the KOH/CS ratio from 2:1 to 4:1, the surface area, total pore volume, volume of micropores, and volume of mesopores, increase, whereas the volume of small-micropores (< 0.8 nm) decreases from 0.36 to 0.31 cm3/g. The adsorption capacity has a good linear correlation with the volume of small-micropores rather than the surface area. In addition, the large quantity of acidic oxygen-containing groups of PACSK may also be responsible for their higher adsorption capacity and selectivity of DBT. The PACSK saturated by DBT can be regenerated by a washing process in a shaking bath or using ultrasonic with toluene at 80 °C.  相似文献   

6.
A new electric double layer capacitor (EDLC) was constructed by using polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) and KOH aqueous solution, and its electrochemical characteristics were investigated by cyclic voltammetry and charge-discharge cycle tests, compared with a case of the cell using only a KOH aqueous solution as an electrolyte. As a result, the cell with the polymer hydrogel electrolyte was found to exhibit higher capacitance than that with the KOH aqueous solution and excellent high-rate dischargeability. The impedance spectroscopic measurements suggested that the higher capacitance could be ascribed to the pseudocapacitance. These results indicate the potential applicability of the polymer hydrogel electrolyte to EDLCs as an electrolyte with good performance.  相似文献   

7.
We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C.  相似文献   

8.
J.M. Rosas  T. Cordero 《Fuel》2009,88(1):19-527
Activated carbon fibers were prepared by chemical activation of hemp fibers with phosphoric acid at different carbonization temperatures and impregnation ratios. Surface properties of the activated carbons fibers were significantly influenced by the activation temperature and the impregnation ratio. An increase of either of these parameters produced a high development of the porous structure of the fibers. Activated carbon fibers with apparent surface area of 1350 m2/g and mesopore volume of 1.25 cm3/g were obtained at 550 °C with an impregnation ratio of 3. The activated carbon fibers presented a high oxidation resistance, due to the presence of phosphorus compounds on the carbon surface. The oxidation resistance results suggest that C-O-PO3 and mainly C-PO3 and C-P groups act as a physical barrier, blocking the active carbon sites for the oxidation reaction.  相似文献   

9.
Kai-Ping Wang  Hsisheng Teng   《Carbon》2006,44(15):3218-3225
Activated carbon fibers are known to contain pores with a small resistance for electrolyte migration while possessing a large electrical resistance between the fibers. A carbon powder derived from pulverization of PAN-based carbon fibers was examined as an electrode for electric double layer capacitors using H2SO4 as the electrolyte solution. The performance of conventional-type activated carbon powders derived from phenol-formaldehyde resin char was also measured for comparison. The fiber-derived carbon exhibited an electrical resistance comparable to that of the conventional carbons while showed a larger specific capacitance as well as a lesser extent of capacitance decrease at high currents due to a smaller pore resistance. An ultimate capacitance as high as 290 F g−1 can be reached for this fiber-derived carbon powder (with a BET surface area of ≈1300 m2 g−1). This large capacitance value was suggested to be associated with the high activity feature of the pore wall.  相似文献   

10.
Wooyoung Kim  Namdong Kim  Pil Kim 《Carbon》2009,47(5):1407-784
The direct functionalization of ordered mesoporous carbon nanopipes was achieved by using nitrogen-containing carbon precursor and SBA-15 as a removable template. The prepared carbon material has uniform pore structure as CMK-5 type and retained a relatively large amount of nitrogen species after pyrolysis and removal of the silica template. The results of cyclic voltammetric measurement showed the prepared nitrogen-functionalized carbon materials was more stable and desirable than CMK-5 for the electrochemical capacitor.  相似文献   

11.
12.
This article presents the main features of electrochemical double layer supercapacitors, made of nanostructured carbon materials with specially selected and optimized porosity structure and electrolyte based on solvent-free ionic liquid as follows 1-methyl-3-butylimidazolium tetrafluoroborate (1Me3BuImBF4). The performance of supercapacitor was carried out by cyclic voltammetry and galvanostatic charge/discharge measurements. The main characteristics of stacked supercapacitors exhibit a nominal voltage 3.0 V and a maximum cell voltage 3.5 V as well as a specific capacitance (individual electrode of supercapacitor) of 111 F/g. The specific energy of 4.1 Wh/kg and specific power of 1.7 W/kg for industrial stacked supercapacitor has been achieved.  相似文献   

13.
Activated carbon fiber cloth (ACFC) electrodes with high double layer capacitance and good rate capability were prepared from polyacrylonitrile (PAN) fabrics by optimizing the carbonization temperature prior to CO2 activation. The carbonization temperature has a marked effect on both the pore structure and the electrochemical performances of the ACFCs. Moderate carbonization at 600 °C results in higher specific surface area and larger pore size, and hence higher capacitance and better rate capability. The specific capacitance of the ACFCs in 6 mol L−1 KOH aqueous solution can be as high as 208 F g−1. It remains 129 F g−1 as the current density increases to 10 000 mA g−1.  相似文献   

14.
A large number of porous carbon materials with different properties in terms of porosity, surface chemistry and electrical conductivity, were prepared and systematically studied as electric double layer capacitors in aqueous medium with H2SO4 as electrolyte. The precursors used are an anthracite, general purpose carbon fibres and high performance carbon fibres, which were activated by KOH, NaOH, CO2 and steam at different conditions. Among all of them, an activated anthracite with a BET surface area close to 1500 m2/g, presents the best performance, reaching a value of 320 F/g, using a three-electrode system. The results obtained for all the samples, agree with the well-known relationship between capacitance and porosity, and show that the CO-type oxygen groups have a positive contribution to the capacitance. A very good correlation between the specific capacitance and this type of oxygen groups has been found.  相似文献   

15.
The penetration of titanium tetraisopropoxide (TTIP) dissolved in supercritical CO2 into the nano-spaces of an activated carbon was studied for the preparation of a TiO2-coated activated carbon. The conversion of TTIP to TiO2 through thermal decomposition was confirmed by evolved gas analysis during heat treatment under a N2 flow. Acetone was detected in the evolved gas, which suggested that some isopropoxide groups in TTIP reacted with the carbonyl groups on the activated carbon surface. This chemical reaction with carbon is expected to be advantageous for favorable attachment to the carbon surface. The crystallite size of anatase in the TiO2/carbon composites was 4.1 nm, as estimated from the X-ray diffraction pattern, which almost corresponded to the graphene crystallite size; La (3.3-3.4 nm), as estimated from both the Raman spectrum and X-ray diffraction pattern. As the size of the crystallite prepared by bulk condensation of TTIP was more than 15 nm, these results confirmed that the anatase crystals were present in the carbon pores. Also, it was suggested that the crystal growth of TiO2 was influenced by the carbon nano-spaces.  相似文献   

16.
Sulfonated polypropylene separators impregnated with the polymer hydrogel electrolyte were used in electric double layer capacitors (EDLCs). The electrochemical properties of the EDLC with the polymer hydrogel electrolyte were investigated by cyclic voltammetry and charge-discharge cycle tests and compared with a KOH aqueous electrolyte. Furthermore, effects of KOH concentration and temperature on capacitance of the EDLC were studied. As a result, it was found that the capacitance of the EDLC with the polymer hydrogel electrolyte was higher than that with a KOH aqueous solution in the wide range of KOH concentration and temperature.  相似文献   

17.
Ashleigh J. Fletcher 《Carbon》2006,44(5):989-1004
Adsorption dynamics are of fundamental importance in applications of adsorbents in real situations. The adsorption/desorption characteristics of a series of adsorbates, with varying hydrophilic/hydrophobic and structural characteristics, for activated carbon BAX950, were investigated for temperatures in the range 288-323 K. These data provide a comprehensive kinetic study of adsorption/desorption for an activated carbon. The results are discussed in relation to the adsorbent pore structure and functional group concentration, adsorptive structure and adsorption mechanism. The study provides evidence for a compensation effect where activation energy and ln(pre-exponential factor) parameters obtained from the Arrhenius equation exhibit a linear correlation.  相似文献   

18.
以环糊精为原料,采取先炭化后活化的方式,制备了具有高比表面积和丰富孔道结构的活性炭材料。本文通过改变KOH与环糊精炭化样品之间的碱炭比,研究了KOH用量对环糊精基活性炭结构及其电化学性能影响。在活化时间、活化温度等因素不变的情况下,活性炭的比表面积、总孔容及比电容随着碱炭比的提高,均呈现先增大后减小的趋势。当碱炭比为3时,活性炭的比表面积为1672m2/g,总孔容为0.75cm3/g,具有最佳的电容性能,在1A/g电流密度下比电容可达165F/g,优于同等条件下的商业炭21KSN(145F/g),50000次循环后的比电容保持率为98.7%。  相似文献   

19.
Superior electric double layer capacitors using ordered mesoporous carbons   总被引:3,自引:0,他引:3  
W. Xing  S.Z. Qiao  F. Li  Z.F. Yan 《Carbon》2006,44(2):216-224
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required.  相似文献   

20.
KOH为化学活化剂的活化过程探讨   总被引:5,自引:0,他引:5  
肖仁贵  廖霞 《贵州化工》2003,28(5):26-27
以无烟煤为原料,KOH为化学活化剂进行活化过程中,通过热分析实验,探讨活化温度与活化过程之间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号