首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The interaction of graphite with plasmas of pure gases (O2, N2 or H2O), air or mixtures of gases containing NO has been studied by XPS “in situ” analysis. Depending on the type of plasma, different species of nitrogen, oxygen and carbon have been detected on the surface of graphite. The nitrogen containing species have been attributed to pyridinic, pyrrol, quartenary and oxidized groups adsorbed on the surface. The evolution with the treatment time of the relative intensity of the different nitrogen bands for Ar + NO, N2 + NO, air or N2 plasmas has served to propose a model accounting for the reactions of graphite with plasmas of NO containing gases. The model explains why carbon materials (in the form of graphite, soot particles, etc.) can be very effective for the removal of the NO present in exhaust combustion gases excited by a plasma. The analysis of the C1s and O1s photoemission peaks reveals the formation of C/O adsorbed species up to a maximum concentration on the surface of around 10% atomic oxygen. A general evolution is the progressive formation of C/O species where the carbon is sp3 hybridized. This tendency is enhanced when graphite is treated with the plasma of water.  相似文献   

2.
《Ceramics International》2017,43(5):4638-4646
The gas-releasing reaction is the most important process in the preparation of foam glass. In this paper we investigated the gas-releasing reactions by means of thermogravimetry coupled with mass spectrometry. We used carbon (activated charcoal and carbon black) and/or manganese oxides (MnO2, Mn2O3, and Mn3O4) as the foaming additives. We show that manganese oxides have different functions in the foaming process. The thermal decomposition of MnO2 below the sintering temperature has a negative impact on the foaming process as it shifts the foaming to higher temperatures, increases the mass-loss rate, leading to open pores, and burns out the carbon. When foaming in an oxidizing atmosphere, the carbon is burnt out by the oxygen from the atmosphere. Instead, Mn2O3 can be used as the foaming agent in an oxidizing atmosphere. In the oxygen-free atmosphere, Mn3O4 can be used as the oxidizing agent, supporting the oxidation of carbon and the foaming process. The redox equilibrium of manganese (Mn2+/Mn3+), influenced by the oxygen partial pressure in the pores and physically dissolved oxygen in the glass, shows the strongest influence on the foaming process. The CO/CO2 ratio in the evolved gases depends on the carbon source and the temperature.  相似文献   

3.
Electrochemical decomposition of CO2 and CO gases using a porous cell of Ru-8 mol% yttria-stabilized zirconia (YSZ) anode/porous YSZ electrolyte/Ni–YSZ cathode system at 400–800 °C was studied by analyzing the flow rate and composition of outlet gas, current density, and phases and elementary distribution of the electrodes and electrolyte. A part of CO2 gas supplied at 50 ml/min was decomposed to solid carbon and O2 gas through the cell at the electric field strengths of 0.9–1.0 V/cm. The outlet gas at a flow rate of 3 ml/min included 61–63% CO2 and 37–39% O2 at 700–800 °C and the outlet gas at a flow rate of 50 ml/min included 73–96% (average 85%) CO2 and 4–27% (average 15%) O2 at 800 °C. On the other hand, the supplied CO gas was also decomposed to solid carbon, O2 and CO2 gases at 800 °C. The fraction of outlet gas at a flow rate of 50 ml/min during the CO decomposition at 800 °C for 5 h was 11–36% CO, 59–81% O2 and 2–9% CO2. The detailed decomposition mechanisms of CO2 and CO gases are discussed. Both Ni metal in the cathode and porous YSZ grains under the DC electric field have the ability to decompose CO gas into solid carbon and O2− ions or O2 gas.  相似文献   

4.

Abstract  

This paper reports isotopic evidence on nonthermal plasma-induced fixation of gas-phase oxygen on the surface of several catalysts such as TiO2, Ag/TiO2, Ag/γ-Al2O3 and Ag/MS-13X at atmospheric-pressure. On-line mass spectrometric analysis and stoichiometric comparison of reactants and products revealed that the fixed surface oxygen can be activated by nonthermal plasma. The fixed 18O by nonthermal plasma survived for a certain period of time (about 30 min), and involved in the formation of isotope-exchanged oxygen (18O16O) and isotope containing CO x (CO and CO2).  相似文献   

5.
Free acids of the iron substituted heteropoly acids (HPA), H7[(P2W17O61)FeIII(H2O)] (HFe1) and H18[(P2W15O56)2FeIII2(H2O)2] (HFe2) were prepared from the salts K7[(P2W17O61)FeIII(H2O)] (KFe1) and Na12[(P2W15O56)2FeIII4(H2O)2] (NaFe4), respectively. The iron-substituted HPA were adsorbed on to XC-72 carbon based GDLs to form HPA doped GDEs after water washing with HPA loadings of ca. 1 μmol. The HPA was detected throughout the GDL by EDX. Solution electrochemistry of the free acids are reported for the first time in sulfate buffer, pH 1-3. The hydrogen oxidation reaction was catalyzed by KFe1 at 0.33 V, with an exchange current density of 38 mA/cm2. Moderate activity for the oxygen reduction reaction was observed for the iron substituted HPA, which was dramatically improved by selectively removing oxygen atoms from the HPA by cycling the fuel cell cathode under N2 followed by reoxidation to give a restructured oxide catalyst. The nanostructured oxide achieved an OCV of 0.7 V with a Tafel slope of 115 mV/decade. Cycling the same catalysts in oxygen resulted in an improved catalyst/ionomer/carbon configuration with a slightly higher Tafel slope, 128 mV/decade but a respectable current density of 100 mA/cm2 at 0.2 V.  相似文献   

6.
We investigated a novel oxidation reaction with surface-oxygen and lattice-oxygen induced using a non-equilibrium electric discharge at ambient temperature. We employed MgO, ZrO2, and TiO2 for this novel reaction. Methane was oxidized easily and converted into H2, CO, and CO2 by the surface-oxygen and lattice-oxygen of oxide with activation of discharge at ambient temperature without gas-phase oxygen. The oxide itself was stable after the reaction. Among these oxides, the tetragonal phase and amorphous phase of ZrO2 showed remarkably high activity for methane oxidation. Consequently, up to 8% of surface and lattice oxygen of the oxide was consumed by methane oxidation induced by electric discharge. The non-equilibrium electric discharge activated both the surface-oxygen and the lattice-oxygen of the oxides and methane molecules in the gas phase. After these reactions, the oxide surface vacant sites were recovered partially through steam post-treatment. Hydrogen formed simultaneously with steam decomposition. Other reactions were also studied by changing the reaction gas: methane into carbon monoxide, carbon monoxide with oxygen, and carbon monoxide with steam. Furthermore, the correlation of reactivity between the feed gas and surface oxygen was studied. Emission spectra under a CH4 atmosphere with electric discharge showed complex peaks caused by carbon monoxide formation at 280-500 nm at 0-4 min, suggesting that surface oxygen on oxides was probably consumed within 4 min from the start of the reaction.  相似文献   

7.
《Fuel》1986,65(10):1356-1359
Interactions between isotopically labelled potassium carbonate (K213CO3) and surface oxides on carbon were studied by temperature-programmed reaction, using carbons with different surface-oxide concentrations. 13CO2 was produced < 1000 K due to isotope exchange between the carbonate and surface oxides originally on the carbon. Carbons with a lower oxygen-content lost more potassium via volatilization than those with higher oxygen contents. The results presented explain previous observations of different temperatures for the apparent onset of potassium carbonate decomposition on carbon, potassium losses on heating, and surface K:O ratios.  相似文献   

8.
A. Messerer 《Carbon》2006,44(2):307-324
The reaction kinetics of the oxidation and gasification of four types of model and real diesel soot (light and heavy duty vehicle engine soot, graphite spark discharge soot, hexabenzocoronene) by nitrogen oxides and oxygen have been characterized for a wide range of conditions relevant for modern diesel engine exhaust and continuously regenerating particle trapping or filter systems (0-20% O2, 0-800 ppm NO2, 0-250 ppm NO, 0-8% H2O, 303-773 K, space velocities 1.3 × 104-5 × 105 h−1). Soot oxidation and NO2 adsorption experiments have been performed in a model catalytic system with temperature controlled flat bed reactors, novel aerosol particle deposition structures, and sensitive multicomponent gas analysis by FTIR spectroscopy. The experimental results have been analyzed and parameterized by means of a simple carbon mass-based pseudo-first-order rate equation, a shrinking core model, oxidant-specific rate coefficients, Langmuir-Hinshelwood formalisms (maximum rate coefficients and effective adsorption equilibrium constants), and Arrhenius equations (effective activation energies and pre-exponential factors), which allow to describe the rate of reaction as a function of carbon mass conversion, oxidant concentrations, and temperature. At temperatures up to 723 K the reaction was driven primarily by NO2 and enhanced by O2 and H2O. Within the technically relevant concentration range the reaction rates were nearly independent of O2 and H2O variations, while the NO2 concentration dependence followed a Langmuir-Hinshelwood mechanism (saturation above ∼200 ppm). Reaction stoichiometry (NO2 consumption, CO and CO2 formation) and rate coefficients indicate that the reactions of NO2 and O2 with soot proceed in parallel and are additive without significant non-linear interferences. The reactivity of the investigated diesel soot and model substances was positively correlated with their oxygen mass fraction and negatively correlated with their carbon mass fraction.  相似文献   

9.
The oxidation of high-purity aluminium sheet in dry oxygen, moist oxygen, carbon dioxide and carbon monoxide (at total pressure 1.333 × 103 Nm?2) was studied in the range 673–923°K, using a vacuum microbalance to follow weight gains. 14CO2 and 14CO were used to elucidate the mechanism of the oxidation in these gases and to estimate the extent of carbon deposition in the oxide layer. The rate of oxidation in moist oxygen was similar to that in dry oxygen, the principle reaction being 2Al + 3H2O ← Al2O3 + 3H2. It is suggested that there are three steps in the reaction in CO2, viz. 2Al+3CO2 ← Al2O3 + 3CO, followed by 2Al + 3CO ← Al2O3 + 3C, and about 10% of the deposited carbon reacting further by 4Al + 3C ← Al4C3. Only the last two reactions are operative in carbon monoxide. The Arrhenius plots show a distinct break in the region 773–823°K for both carbon monoxide and carbon dioxide, but not for dry or moist oxygen. This is tentatively explained by a change in the rate-determining process from diffusion via grain boundaries or cracks in the oxide, to lattice diffusion. It is suggested that carbon may become mobile in the oxide film between 773 and 823°K and may tend to congregate in the grain boundaries and cracks. The oxide film remained protective throughout the duration of the experiments in all the gases.  相似文献   

10.
The CO/O2 and CO2 pulse experiments were carried out to acquire useful information about oxygen release/storage and CO2 adsorption on ceria and Pt–Rh/ceria. In the CO pulse experiments at 500 °C, ca. 60% of CO uptake was released as CO2 while the rest of CO uptake was retained as carbon residuals on the surfaces of both samples. The carbon residuals could be removed when O2 was provided. In the CO2 pulse experiments, the adsorption of CO2 was found to relate to the temperatures and the oxidation states of surface cerium. The reduced Ce3+ sites (O vacancies) were responsible for the adsorption of CO2 at the temperature of 500 °C. In addition, the molar ratios of CO2 adsorption to O vacancies (38–39%) were in agreement with the ratios of carbon residuals to CO uptake ( ca. 40%) measured in the CO pulse experiments. Quantitative analyses of oxygen release/storage and CO2 adsorption implied that in the process of oxygen release, carbon residuals were possibly in the form of a carbonate-like species due to the adsorption of CO2 onto the reduced Ce3+ sites.  相似文献   

11.
Nanocrystalline materials with chemical composition corresponding to formula Ru1−xNixO2−y (0.02 < x < 0.30) were prepared by sol-gel approach. Substitution of Ru by Ni has a minor effect on the structural characteristics extractable from X-ray diffraction patterns. The electrocatalytic behavior of Ru1−xNixO2−y with respect to parallel oxygen (oxygen evolution reaction, OER) and chlorine (chlorine evolution reaction, CER) evolution in acidic media was studied by voltammetry combined with differential electrochemical mass spectrometry (DEMS). The DEMS data indicate a significant decrease of the over-voltage for chlorine evolution with respect to that of pure RuO2. The oxygen evolution is slightly hindered. The increasing Ni content affects the electrode material activity and selectivity. The overall material's activity increases with increasing Ni content. The activity of the Ru-Ni-O oxides towards Cl2 evolution shows a distinguished maximum for material containing 10% of Ni. Further increase of Ni content results in suppression of Cl2 evolution in favor of O2 evolution. A model reflecting the cation-cation interactions resulting from Ni-doping is proposed to explain the observed trends in electrocatalytic behavior.  相似文献   

12.
Current-voltage characteristics of limiting current-type oxygen sensors were investigated. The sensor showed a two-stage current plateau in current-voltage characteristics in H2O–O2–N2 and CO2–O2–N2 mixtures. The sensor current in the first stage corresponded to O2 concentration and was practically independent of H2O and CO2 concentration in the gas mixtures. The sensor current in the second stage increased linearly with the H2O or CO2 concentration, for a sensor with high electrode activity. The behavior of the sensor suggests that the deoxidization of H2O or CO2 occurs at the sensor cathode. For nonequilibrium gas mixtures containing combustible gas and O2, the sensor current in the first stage decreased linearly with combustible gas concentration. The decrease of the sensor current differed from that corresponding to the O2 concentration consumed by the reaction of these gases in the ambient gas, depending on the kind of combustible gas. The reduction of the sensor current is explained by a model assuming that the reaction of these gases occurs at the cathode, and the diffusion of the combustible gas in the porous coating is a rate-limiting step.  相似文献   

13.
Layered perovskite oxides have ordered A-cations localizing oxygen vacancies, and may potentially improve oxygen ion diffusivity and surface exchange coefficient. The A-site-ordered layered perovskite PrBa0.5Sr0.5Co2O5+δ (PBSC) was evaluated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The material was characterized using electrochemical impedance spectroscopy in a symmetrical cell system (PBSC/Ce0.9Sm0.1O1.9 (SDC)/PBSC), exhibiting excellent performance in the intermediate temperature range of 500-700 °C. An area-specific-resistance (ASR) of 0.23 Ω cm2 was achieved at 650 °C for cathode polarization. The low activation energy (Ea) 124 kJ mol−1 is comparable to that of La0.8Sr0.2CoO3−δ. A laboratory-scaled SDC-based tri-layer cell of Ni-SDC/SDC/PBSC was tested in intermediate temperature conditions of 550 to 700 °C. A maximum power density of 1045 mW cm−2 was achieved at 700 °C. The interfacial polarization resistance is as low as 0.285, 0.145, 0.09 and 0.05 Ω cm2 at 550, 600, 650 and 700 °C, respectively. Layered perovskite PBSC shows promising performance as cathode material for IT-SOFCs.  相似文献   

14.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

15.
We report on the filtration behavior, scanning electron microscopy (SEM) and gas permeability of multi-wall carbon mats (buckypapers). The SEM-apparent macropore diameter, image fractal dimension and lacunarity (a measure of translational invariance) of the samples averaged at 38 nm, 1.82 and 0.55, respectively. Their N2 adsorption analysis revealed an average BET specific surface area of 197 m2/g, BJH pore diameter of 2.67 nm and FHH fractal dimension of 2.492. These parameters were rather insensitive to the preparation conditions. The effective diffusivity of six common laboratory gases (O2, N2, H2, He, CO2, CH4) through buckypapers of different thicknesses was also measured. Results fell into the 3-12 × 10−9 m2 s−1 range and correlated with the kinetic diameter of the gases.  相似文献   

16.
《Journal of Catalysis》1999,181(1):155-159
Ultraviolet light dramatically increases the rate of isotope exchange between gas-phase O2and water adsorbed on TiO2at room temperature, but it does not affect the rate of CO2–water exchange. Both ethanol and acetaldehyde, when coadsorbed with H218O, dramatically decrease the rate of O2exchange, but not CO2exchange, with adsorbed H218O. This decrease is attributed to a combination of competition for adsorbed oxygen between exchange and photocatalytic oxidation of the adsorbed organic and blocking of the oxygen adsorption sites by the organic. The same oxygen species participate in O2-H218O exchange and photocatalytic oxidation.  相似文献   

17.
Lithium manganese oxides have attracted much attention as cathode materials for lithium secondary batteries in view of their high capacity and low toxicity. In this study, layered manganese oxide (δ-KxMnO2) has been synthesized by thermal decomposition of KMnO4, and four lithium manganese oxide phases have been synthesized for the first time by mild hydrothermal reactions of this material with different lithium compounds. The lithium manganese oxides were characterized by powder X-ray diffraction (XRD), inductively coupled plasma emission (ICPE) spectroscopy, and chemical redox titration. The four materials obtained are rock salt structure Li2MnO3, hollandite (BaMn8O16) structure α-MnO2, spinel structure LiMn2O4, and birnessite structure LixMnO2. Their electrochemical properties used as cathode material for secondary lithium batteries have been investigated. Of the four lithium manganese oxides, birnessite structure LixMnO2 demonstrated the most stable cycling behavior with high Coulombic efficiency. Its reversible capacity reaches 155 mAh g−1, indicating that it is a viable cathode material for lithium secondary batteries.  相似文献   

18.
Ni/Al2O3 with the doping of CeO2 was found to have useful activity to reform ethane and propane with steam under Solid Oxide Fuel Cells (SOFCs) conditions, 700-900 °C. CeO2-doped Ni/Al2O3 with 14% ceria doping content showed the best reforming activity among those with the ceria content between 0 and 20%. The amount of carbon formation decreased with increasing Ce content. However, Ni was easily oxidized when more than 16% of ceria was doped. Compared to conventional Ni/Al2O3, 14%CeO2-doped Ni/Al2O3 provides significantly higher reforming reactivity and resistance toward carbon deposition. These enhancements are mainly due to the influence of the redox properties of doped ceria. Regarding the temperature programmed reduction experiments (TPR-1), the redox properties and the oxygen storage capacity (OSC) for the catalysts increased with increasing Ce doping content. In addition, it was also proven in the present work that the redox of these catalysts are reversible, according to the temperature programmed oxidation (TPO) and the second time temperature programmed reduction (TPR-2) results.During the reforming process, in addition to the reactions on Ni surface, the gas-solid reactions between the gaseous components presented in the system (C2H6, C3H8, C2H4, CH4, CO2, CO, H2O, and H2) and the lattice oxygen (Ox) on ceria surface also take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen (Ox) on ceria surface (CnHm+OxnCO+m/2(H2)+Oxn) can prevent the formation of carbon species on Ni surface from hydrocarbons decomposition reaction (CnHmnC+m/2H2). Moreover, the formation of carbon via Boudard reaction (2CO⇔CO2+C) is also reduced by the gas-solid reaction of carbon monoxide (produced from steam reforming) with the lattice oxygen (CO+Ox⇔CO2+Ox−1).  相似文献   

19.
A. Gugliuzza  E. Drioli 《Polymer》2005,46(23):9994-10003
CO2 transport through functional assembled mono-layers was evaluated in relation to H2O and nonpolar gases such as CH4, O2, N2. Membranes based on Pebax®2533 were functionalised by incorporating chemical compounds containing free hydroxyl, N-alkyl sulphonamide, bulky benzoate groups. The effects of both the chemical nature and concentration of the modifier on the gas transport were reported, respectively. The permeability coefficients of different penetrating chemical species were compared, evidencing the higher affinity of the layers to water vapour and carbon dioxide, due to favourable interactions between polar moieties and penetrant. The condensability of the penetrant directed the permeability of the species considered and was responsible for the high solubility selectivity between H2O and CO2 (i.e. , DH2O/D2CO=0.6, SH2O/S2CO=11.4 at 25 °C for Pebax/KET 50/50 w/w). An increase in polar moieties resulted in enhanced permeability and selectivity with respect to the pure polymer. In contrast, the functionalised polymer was not capable to discriminate between the smallest penetrants such as O2 and N2, with consequent decrease in the ideal selectivity (P2CO/O2, P2CO/N2). The functional layers exhibited permeability and selectivity covering broad ranges of values.  相似文献   

20.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号