首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical deposition technique based on co-deposition was used to deposit preferentially oriented Bi2Te3 nanostructures (nanofilm, and nanowire). The shared underpotential deposition (UPD) potentials for both Bi and Te co-deposition were determined by cyclic voltammetric measurements. The scanning probe microscopy (scanning tunneling microscopy (STM) and atomic force microscopy (AFM)) and the X-ray diffraction (XRD) data indicated that the electrodeposition of Bi2Te3 results in nanofilm-structured deposits with a preferential orientation at (0 1 5) and nanowired-structured deposits with a preferential orientation at (1 1 0) in acidic and basic (in the presence of ethylenediaminetetraacetic acid (EDTA)) medium, respectively. The results show that the nucleation and growth mechanism follows 3D mode in acidic solutions and 2D mode in basic solution containing EDTA additive. The optical characterization performed by reflection absorption Fourier transform infrared (RA-FTIR) spectroscopy showed that the band gap energy of Bi2Te3 nanostructures depends on the thickness, size, and shape of the nanostructures and the band gap increases as the deposition time decreases. Moreover, the quantum confinement is strengthened in the wire-like deposits relative to the film-like deposits. Energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that Bi2Te3 nanostructures were always in 2:3 stoichiometry, and they were made up of only pure Bi and Te.  相似文献   

2.
The author examines Bi2Te3 deposition from a DMSO solution containing TeCl4 and Bi(NO3)3 × 5H2O by means of cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). Accumulated charges and related mass changes for Bi2Te3 deposition on working electrodes are measured in situ. The deposit composition is more dependent on Te4+ concentrations in DMSO solution than on the potential. In a DMSO solution containing 0.01 M Te4+ and 0.0075 M Bi3+, Bi2Te3 deposits were obtained in the potential range between −0.2 and −0.8 V vs. Ag/AgCl. In a DMSO solution containing 0.05 M Te4+ and 0.0375 M Bi3+, Te-rich deposits were formed from −0.2 to −0.8 V vs. Ag/AgCl.  相似文献   

3.
The electrochemical reduction process of Bi3+, HTeO2+, SbIII and their mixtures in nitric acid medium was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The reduction products electrodeposited at various potentials were examined using X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results show that cathodic process in the nitric acid solution containing Bi3+, HTeO2+ and SbIII involves the following reduction reactions in different polarizing potential ranges: In low polarizing potential ranges, Te0 is formed firstly on the electrode surface through the electrochemical reduction of HTeO2+; with the negative shift of the cathodic polarizing potential, the reduction reaction of Bi3+ with Te0 to form Bi2Te3 takes place; when the cathodic polarizing potential is negative enough, Bi3+ and SbIII react with Te0 to form Bi0.5Sb1.5Te3. The results indicate that Bi0.5Sb1.5Te3 films can be fabricated by controlling the electrodepositing potential in a proper high potential ranges.  相似文献   

4.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

5.
A 23–1 fractional factorial design comprising four runs and three centre points was applied in order to optimize the electrodeposition process to find a compound with the best stoichiometry leading to a Bi2Te2.7Se0.3 thin film suitable for thermoelectric applications. The key factors considered were the deposition potential, the percentage of bismuth and the percentage of selenium in the solution. The BiIII, SeIV, TeIV electrolyte mixtures in 1 M HNO3 (pH 0), allowed deposition of ternary alloys to be achieved at room temperature on stainless steel substrates. The deposition mechanism was investigated by linear voltammetry. The films were characterized by micropobe analysis, X-ray diffraction, scanning electron microscopy and atomic force microscopy. The XRD patterns of the film show that the as-deposited are polycrystalline and isostructural to Bi2Te3. The SEM study shows that the film is covered by crystallites while the AFM image reveals a low level of roughness.  相似文献   

6.
Electrochemical deposition of Sb2Te3 thin film on Au (1 1 1) disk via the route of electrochemical atomic layer epitaxy (ECALE) is described in this paper. Electrochemical aspects of Te and Sb on Au, Te on Sb-covered Au, and Sb on Te-covered Au were studied by means of cyclic voltammetry and coulometry. The apparent variation of coverage for Te or Sb on hetero-covered substrate is explained by considering the thermodynamic process of compound formation. A steady ECALE deposition for Sb2Te3 compound could be attained after negatively adjusting the underpotential deposition (UPD) potentials of Sb and Te on Au in steps over the initial 40 cycles, and the potentials could be kept constant for the following deposition. A 200-cycle deposit, which was grown with the steady deposition potentials, was proved to be a single phase Sb2Te3 compound by X-ray diffraction analysis. The 2:3 stoichiometric ratio of the deposit was further verified by energy dispersive X-ray (EDX) quantitative analysis. The p-type semiconductive property was demonstrated by measurements of the Seebeck coefficient and the electrical resistivity with a value of 145 μV/K and 9.37 μΩm, respectively. The morphologies of deposits with various growth cycle numbers were observed with FE-SEM. The evolvement mechanism of the morphology was investigated. The results show that the morphology of deposit has changed after initial potential adjustment and numberless thin sheets appeared and grew uprightly during the continuous cycle process. Fourier transform infrared spectroscopy (FTIR) absorption measurements suggested a band gap of 0.26 eV in very good agreement with literature reports for Sb2Te3 single crystals.  相似文献   

7.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

8.
A method to control composition of Bi2Te3 films by mass transfer manipulation has been developed. The film composition can be varied by a diffusion-controlled method, which is related to the change of Bi3+/HTeO2+ ratios in a controlled diffusion layer. A homogeneous and dense film with precise chemical composition could thus be obtained under constant electrode polarization. Meanwhile, the solo dependence of film properties on composition change of both Te-rich and Bi-rich films were investigated. Firstly, the studies of XRD and FE-SEM showed that different Te contents in deposit would lead to different dimensions of unit cell and grain sizes. The Seebeck coefficient increased apparently when the Te content was over 60 at.% Te. Te-rich films had higher carrier concentration but slower mobility than Bi-rich films. Inverse relations were observed between carrier concentration and carrier mobility and between Seebeck coefficient and conductivity. Therefore, an optimal power factor of 7 × 10−4 W/m K2 was realized near the stoichiometric Bi2Te3.  相似文献   

9.
《Ceramics International》2020,46(15):24162-24172
This work reports the pulsed laser deposition of n-type selenium (Se) doped bismuth telluride (Bi2Te2.7Se0.3) and n-type bismuth telluride (Bi2Te3) nanostructures under varying substrate temperatures. The influence of the substrate temperature during deposition on the structural, morphological and thermoelectric properties for each phase was investigated. Density functional theory (DFT) simulations were employed to study the electronic structures of the unit-cells of the compounds as well as their corresponding partial and total densities of states. Surface and structural characterization results revealed highly crystalline nanostructures with abundant grain boundaries. Systematic comparative analysis to determine the effect of Se inclusion into the Bi2Te3 matrix on the thermoelectric properties is highlighted. The dependence of the thermoelectric figure of merit (ZT) of the nanostructures on the substrate temperatures during deposition was demonstrated. The remarkable room temperature thermoelectric power factor (PF) of 2765 μW/mK2 and 3179 μW/mK2 for pure and Se-doped Bi2Te3 compounds respectively, signifies their potential of being useful in cooling and power generation purposes. The room temperature ZT values of the Se-doped Bi2Te3 was found to be 0.92, about 30% enhancement as compared with the pure phase, which evidently results from the suppressed thermal conductivity in the doped species caused by phonon scattering at the interfaces.  相似文献   

10.
The electrodeposition of Bi2Se3 nanowires on an anodic aluminum oxide template was investigated by cyclic voltammetry in a tartaric acid aqueous solution. The electrochemical behavior of the Bi2Se3 nanowires in the electrolytic solution was also investigated using cyclic voltammetry, and the underpotential deposition mechanism of the Bi2Se3 nanowires was determined. According to the cyclic voltammetric curves, −0.20 V vs. SCE (saturated calomel electrode) was chosen as the deposition potential of the Bi2Se3 nanowires. The ratio of Bi to Se is nearly 2:3, verified by energy-dispersive X-ray spectroscopy and with the addition of surfactant. X-ray diffraction, scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy indicate that annealing can improve the crystallinity and chemical composition of Bi2Se3 nanowires. Surfactant can also improve the surface morphology and composition of the Bi2Se3 nanowires.  相似文献   

11.
In the present study, bismuth telluride compound thin film was grown by means of electrochemical atomic layer epitaxy (ECALE) with an automated thin layer flow cell deposition system. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. Because developing a contact potential between the substrate and the growing semiconductor, the deposition potential adjustment is necessary for the first 30 or more cycles of each component. The dependence of the deposit as a function of the deposition potential adjustment slope has been investigated. The results show that an excess elemental Bi existed at a slope of −2 mV/p (p indicates per cycle), indicating that this is a lack of deposition at the potential. Single-phase Bi2Te3 compound could be obtained between −4 and −6 mV/p. Bi2Te3 and Bi4Te3 coexistence is observed at a slope of −10 mV/p. The EDS data indicates that the stoichiometry of compound is consistent with XRD result. SEM studies show that the deposits are inhomogeneous and have an micron sized particles morphology.  相似文献   

12.
《Ceramics International》2020,46(3):3339-3344
Bismuth telluride (Bi2Te3) is so far the best thermoelectric material for applications near room temperature, and also exhibits large magnetoresistance. While the electrochemical deposition approach can achieve effective growth of the Bi2Te3 films at micrometer thickness, the magnetoresistance transportation behavior of the electrochemically deposited Bi2Te3 films is yet not clear. In this work, we demonstrate the thermoelectric and magnetoresistance behaviors of the micrometer thick Bi2Te3 films deposited via electrochemical deposition approach. The optimum thermoelectric power factor is observed in the Bi2Te3 sample with electrochemical deposition thickness of ~6 μm followed by rapid photon annealing treatment, reaching the magnitude of ~1 μWcm−1K−2 that is similar to the previous reports. In contrast to the single crystalline or vacuum deposited Bi2Te3 or Bi2Se3 films, the electronic transportations of the electrochemically deposited Bi2Te3 are more influenced by the carrier scatterings by the grain boundaries and lattice defect. As a result, their magnetoresistance (MR) shows a distinguished non-monotonic behavior when varying the magnetic field, while the magnitude of their MR exhibits a positive temperature dependence. These MR behaviors largely differ to the previously reported ones from the single crystalline or vacuum deposited Bi2Te3 or Bi2Se3, in which cases their MR monotonically increases with the magnetic field and exhibits negative temperature dependence. This work reveals the previously overlooked role of grain boundary that also regulates the transportation properties of bismuth chalcogenides in the presence of magnetic field.  相似文献   

13.
Thin-layer electrochemical studies of the underpotential deposition (UPD) of Bi and Te on cold rolled silver substrate have been performed. Different approaches have been employed to investigate the influence of silver oxide film on Bi UPD. As a result, the precedent deposition of a little bismuth can effectively prevent silver from surface oxidation. The voltammetric analysis of underpotential shift demonstrates that the first Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fit UPD dynamics mechanism. Thin film of bismuth telluride was formed using an automated flow deposition system, by alternately depositing Te and Bi. The electrochemical conditions necessary to form Bi2Te3 deposits of 50 cycles on cold rolled silver by ECALE are described here. X-ray diffraction indicated the deposits were Bi2Te3. EDX quantitative analysis gave the 2:3 stoichiometric ratio of Bi to Te, which is consistent with XRD result. Electron probe microanalysis of the deposits showed a worm-like network structure. The map of Te and Bi element indicated the distribution of both Te and Bi is homogeneous and locates the same sites, which is favorable to Te-Bi binary system. The composition analysis of structural expanded image also showed the approximately constant composition of Te:Bi ≈ 3:2 has taken place.  相似文献   

14.
Bismuth selenide thin films were grown on Pt substrate via the route of electrochemical atomic layer epitaxy (ECALE) in this work for the first time. The electrochemical behaviors of Bi and Se on bare Pt, Se on Bi-covered Pt, and Bi on Se-covered Pt were studied by cyclic voltammetry and coulometry. A steady deposition of Bi2Se3 could be attained after negatively stepped adjusting of underpotential deposition (UPD) potentials of Bi and Se on Pt in the first 40 deposition cycles. X-ray diffraction (XRD) analysis indicated that the films were single phase Bi2Se3 compound with orthorhombic structure, and the 2:3 stoichiometric ratio of Bi to Se was verified by EDX quantitative analysis. The optical band gap of the as-deposited Bi2Se3 film was determined as 0.35 eV by Fourier transform infrared spectroscopy (FTIR), which is consistent with that of bulk Bi2Se3 compound.  相似文献   

15.
Deposition of Sb2Te3 thin films on polycrystalline Au substrates by electrochemical atomic layer epitaxy (ECALE) is described in this paper. Electrochemical aspects were characterized by means of cyclic voltammetry, anodic potentiodynamic scanning and coulometry. A steady ECALE deposition for Sb2Te3 compound could be attained after negatively adjusting the underpotential deposition (UPD) potentials of Sb and Te on Au in steps over the initial 40 cycles, and the potentials could be kept constant for the following deposition. A 400 cycle deposit, which was grown with the steady deposition potentials, was proved to be a single phase Sb2Te3 compound by X-ray diffraction analysis and SEM observation shows the deposit consisted of nanoscale particles with average size about 100 nm. The 2:3 stoichiometric ratio of the deposit was further verified by energy dispersive X-ray (EDX) quantitative analysis.  相似文献   

16.
The catalytic behaviour of the PbO-Mn3O4 and the Bi2O3-MoO3 systems was investigated in the selective reduction of nitrobenzene to nitrosobenzene. Lead compounds appeared to be good catalysts, and co-catalysts when used with Mn3O4. Different from oxidations by di-oxygen, Bi3O3 alone is a good catalyst and formation of mixed Bi-Mo-O compounds does not enhance the catalytic activity. It is suggested that the difference between these catalysts in the mentioned reaction is related to the way in which the oxygen vacancy is represented by the oxygen donor.  相似文献   

17.
We discover a simple scalable (10?g scale for one batch in this study) route of synthesizing Bi2Te3 nanocomposites in aqueous solution with high yield at room temperature without involving any organic chemicals, capping agents, and surfactants. It is conceivable that the formation mechanism involves interaction between elemental Bi and Te, which takes place at a very slow rate and takes about 2 weeks to form Bi2Te3. Heat treatment of Bi2Te3 nanocomposite yields a single phase of Bi2Te3 with the relatively high power factor of 24.2?μW/cm?K2 at 425?K compared to other solution methods.  相似文献   

18.
Photocatalytic degradation of harmful organic matter is a feasible and environmentally friendly method. Bi2WO6 has become a hotspot of photocatalysts because of its unique layered structure and visible light response. In the present study, Sn doping was adopted to modified Bi2WO6 by hydrothermal method. The Sn-doped Bi2WO6 photocatalysts were characterized by XRD, SEM, TEM, BET, XPS, PL, and DRS, respectively. The results show that Sn-doped Bi2WO6 shows three-dimensional (3D) flower-like morphology, which is composed of two-dimensional (2D) nanosheets. Sn4+ ions enter into the Bi2WO6 lattice, producing a degree of Bi2WO6 lattice distortion, which is in favor of reducing the recombination of photogenerated electrons and holes. Moreover, the specific surface area of Bi2WO6 is significantly increased after doping, which is beneficial to providing more active sites. The photocatalytic results show that 2%Sn-Bi2WO6 exhibits the highest photocatalytic activity. After 60 min of irradiation, the photocatalytic degradation degree of methylene blue (MB) increases from 80.6% for pure Bi2WO6 to 92.0% for 2%Sn-Bi2WO6. The first-order reaction rate constant of 2%Sn-Bi2WO6 is 0.030 min−1, which is 1.7 times than that of pure Bi2WO6.  相似文献   

19.
Manganese dioxide electrode shows reversible charge storage capacity, if the charge-discharge process is limited to 0.3e exchange. Addition of small amount of Bi2O3 to manganese dioxide induces reversibility with an exchange of 2e/Mn. Nickel hydroxide is known to reversibly exchange 1e. In spite of isostructural relationship between the cobalt hydroxide, nickel hydroxide and manganese dioxide, cobalt hydroxide does not show any electrochemical activity. Bi2O3 modified cobalt hydroxide electrodes exchanges 0.3-0.5e/Co during the charge discharge process. The oxidation-reduction process in cobalt hydroxide and Bi2O3 modified cobalt hydroxide electrodes were monitored using the PXRD patterns.  相似文献   

20.
The growth of interfacial compounds between TiO2 and Bi2O3 during transient liquid phase bonding at 900, 1000 and 1100 °C for various times was investigated. The microstructures and compositions of compounds in joints were analyzed by means of SEM and EPMA. It was found that the compound Bi4Ti3O12 forms initially and replaces the Bi2O3 interlayer. Bi2Ti4O11 then arises at the interface between Bi4Ti3O12 and TiO2 and the metastable Bi2Ti2O7 phase appears last at the interface between Bi4Ti3O12 and Bi2Ti4O11. The modes and activation energies of the growth of Bi4Ti3O12 and Bi2Ti4O11 were determined respectively. Holes in the middle of the joint heated at 1100 °C for 24 h were also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号