首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of trichloroethylene (TCE) by two activated carbon fibers (ACFs) and two granular activated carbons (GACs) preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 A. It also had the highest volume in pores 5-8 A, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 A, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the waythatthe carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption.  相似文献   

2.
3.
The principal objective of this study was to elucidate mechanisms by which NOM affects the adsorption of a nonpolar (simazine) and a polar (asulam) herbicide on activated carbon. Experiments were carried out in microcolumns that were continuously fed solutions containing NOM with different molecular weight (MW) distributions and intermittently solutions containing the same NOM plus simazine or asulam. The MW distributions of a groundwater NOM were altered by coagulation and ultrafiltration, which resulted in the preferential removal of high-MW, UV260-absorbing NOM. At a given NOM loading, the simazine removal efficiency was higher in the column that was preloaded with raw groundwater than in columns receiving coagulated or ultrafiltered water. In contrast, the asulam removal efficiency was similar for all three NOM solutions at a given NOM loading. Therefore, the results suggested that low-MW, UV260-absorbing NOM molecules competed directly with strongly adsorbing pesticides, such as simazine, for adsorption sites. For more weakly adsorbing pesticides, such as asulam, direct competition for adsorption sites originated not only from the strongly adsorbing, low-MW NOM, but also from more weakly adsorbing, higher-MW NOM. Consequently, the competing NOM fraction increases as the adsorbability of the SOC decreases, a result that was confirmed by adsorption data for additional pesticides of similar size. However, a smaller pesticide competed more effectively for adsorption sites than a larger pesticide of similar polarity, suggesting that the concentration of competing NOM decreases as the MW of the SOC decreases.  相似文献   

4.
The effect of natural organic matter (NOM) characteristics and water quality parameters on NOM adsorption to multiwalled carbon nanotubes (MWNT) was investigated. Isotherm experiment results were fitted well with a modified Freundlich isotherm model that took into account the heterogeneous nature of NOM.The preferential adsorption of the higher molecular weight fraction of NOM was observed by size exclusion chromatographic analysis. Experiments performed with various NOM samples suggested that the degree of NOM adsorption varied greatly depending on the type of NOM and was proportional to the aromatic carbon content of NOM. The NOM adsorption to MWNT was also dependent on water quality parameters: adsorption increased as pH decreased and ionic strength increased. As a result of NOM adsorption to MWNT, a fraction of MWNT formed a stable suspension in water and the concentration of MWNT suspension depended on the amount of NOM adsorbed per unit mass of MWNT. The amount of MWNT suspended in water was also affected by ionic strength and pH. The findings in this study suggested that the fate and transport of MWNT in natural systems would be largely influenced by NOM characteristics and water quality parameters.  相似文献   

5.
This study investigated displacement of atrazine by the strongly competing fraction of natural organic matter (NOM) in batch and continuous-flow powdered activated carbon/PAC) adsorption systems. Due to the displacement effect, atrazine adsorption capacity in a continuous flow PAC/microfiltration (MF) system, where the carbon retention time is greater than the hydraulic retention time, decreased with time or NOM throughput. The capacity was lower than that measured in a batch reactor or predicted by the equivalent background compound-ideal adsorbed solution theory (EBC-IAST) method. A mathematical model previously developed to simulate the adsorption process in the PAC/MF system was modified to take into account the displacement effect. Two types of PACs were tested using a range of influent atrazine concentrations and carbon doses. The extent of atrazine displacement by NOM was found to depend on the type of PAC, while the rate of displacement was a function of PAC type as well as carbon dose. The PAC lost its adsorption capacity for atrazine faster at a lower carbon dose. PAC B, which has a higher percentage of mesopores, lost more atrazine adsorption capacity but at a slower rate than PAC A.  相似文献   

6.
The microscopic structure of carbonaceous surfaces exposed to natural organic matter (NOM) under aqueous conditions has been explored using atomic force microscopy (AFM). Dismal Swamp Water was used as the NOM source, while highly ordered pyrolytic graphite (HOPG) served as a surrogate for the graphene sheets that characterize the surface of many carbonaceous materials in aquatic environments. Under acidic conditions, the HOPG surface was covered with a densely packed monolayer of NOM molecules. In some cases, aggregates of well-defined, individual NOM molecules were observed that exhibited a degree of registry with respect to the HOPG substrate. This suggests that adsorbate-substrate interactions play a role in moderating the structure of the adsorbate layer. As the pH increased, the concentration of adsorbed NOM decreased systematically because of increasingly repulsive interactions between adsorbates. Increasing the ionic strength produced a modest increase in the concentration of adsorbed NOM. Ca2+ ions exerted a more pronounced influence on both the surface coverage of adsorbed NOM molecules and the size of individual adsorbates because of the effects of intermolecular complexation. In contrast to the spherical structures observed by AFM under aqueous conditions, adsorbed NOM formed a mixture of "ringlike" assemblies and larger aggregates upon drying.  相似文献   

7.
Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.  相似文献   

8.
A kinetic study on the thermal denaturation accompanying precipitation of hen egg-white lysozyme was performed at temperatures between 50 and 90 degrees C. Visible precipitation occurred at lysozyme concentrations higher than 10(-5)M. Even at the concentration of 10(-6)M where no visible precipitation was observed, irreversible and reversible denaturation could be clearly discriminated. The former involves two different reactions with activation energies of approximately 93 and 50 kJ x mol(-1). On the other hand, enthalpy and entropy changes in the latter are 443 kJ x mol(-1) and 1280 J x K(-1) x mol(-1), respectively, indicating a large conformational change. The contradiction that the denaturation or deactivation reaction fitted first-order reaction kinetics while its rate constant depended on the protein concentration, was resolved by newly proposed schemes. The apparent first-order rate constant obtained experimentally depended on the initial protein concentration being on the order of almost unity. Moreover, it was revealed that the apparent first-order reaction involved a second-order reaction that characterized the aggregation of denatured protein molecules. The theory developed here explained reasonably the thermal denaturation accompanying precipitation that occurs at high protein concentration and at high temperature, and was also successfully applied to the lower concentration range with no accompanying precipitation.  相似文献   

9.
Natural organic matter (NOM) hinders adsorption of trace organic compounds on powdered activated carbon (PAC) via two dominant mechanisms: direct site competition and pore blockage. COMPSORB, a three-component model that incorporates these two competitive mechanisms, was developed in a previous study to describe the removal of trace contaminants in continuous-flow hybrid PAC adsorption/membrane filtration systems. Synthetic solutions containing two model compounds as surrogates for NOM were used in the original study to elucidate competitive effects and to verify the model. In the present study, a quantitative method to characterize the components of NOM that are responsible for competitive adsorption effects in natural water was developed to extend the application of COMPSORB to natural water systems. Using batch adsorption data, NOM was differentiated into two fictive fractions, representing the strongly competing and pore blocking components, and each was treated as a single compound. The equilibrium and kinetic parameters for these fictive compounds were calculated using simplified adsorption models. This parametrization procedure was carried out on two different natural waters, and the model was verified with experimental data obtained for atrazine removal from natural water in a PAC/membrane system. The model predicted the system performance reasonably well and highlighted the importance of considering both direct site competition and pore blockage effects of NOM in modeling these systems.  相似文献   

10.
文章研究了天然斜发沸石对锌离子的去除效果,及其改型和吸附条件的影响.研究了初始浓度和流速对吸附的影响,以及温度对洗脱的影响.通过实验测定铵型斜发沸石对锌离子的平均交换容量为29.94 mmol/100 g沸石.用Langmuir吸附等温方程拟合了吸附等温数据,结果表明其具有很好的拟合精度.依据热力学平衡原理,计算出该过程的热力学参数,如焓、吉布斯自由能和熵变.研究表明铵型斜发沸石吸附锌离子的过程为自发的吸热反应,高温有利于铵型斜发沸石对锌离子的吸附.  相似文献   

11.
为研究高粱壳色素上染毛织物的染色机制,给优化染色工艺提供理论指导,应用动力学、热力学模型对高粱壳色素上染毛织物的实验数据进行拟合。结果表明,高粱壳色素上染毛织物符合准二级动力学模型。染色温度在80~100℃范围内,随着温度升高,染色速率、半染时间及扩散系数均增大。高粱壳色素上染毛织物的吸附等温线符合朗格缪尔型,属于单分子层吸附。染色温度在80~100℃范围内,随着染色温度的升高,上染到毛织物上的高粱壳色素量增加,吸附饱和值升高;并且染色热和染色焓变均为正值。  相似文献   

12.
The influence of natural organic matter (NOM) rigidity on the sorption, desorption, and competitive displacement rates of 1,2-Dichlorobenzene (1,2-DCB) was evaluated using batch reactor experiments with two surface soils (Yolo and Forbes) and a shale (Ohio). Previous characterization suggests that the shale NOM is the most reduced and condensed, the Yolo soil is the most oxidized and amorphous, and Forbes soil has an intermediate NOM structure. The rate study for each sorbent was conducted under the same reactor parameters, and 1,2-DCB mass-transfer rates were determined using the distributed first-order mass-transfer rate model based on the gamma probability density function. To measure competitive displacement rates, 1,2,4-trichlorobenzene (1,2,4-TCB) was delivered as a competitor after 34 days pre-equilibration. Higher fractions of contaminant subject to instantaneous mass transfer and much faster rates of approach to apparent sorption equilibrium are found in Yolo soil when compared with Forbes soil and the shale. The size of the instantaneously desorbing fraction thus appears inversely related to the hard carbon fraction. In the NOM compartment where mass transfer is rate-limited, rate coefficient distributions are shifted toward lower rates for desorption and competitive displacement of 1,2-DCB in Ohio shale, followed by Forbes soil. Sorption and desorption rate distributions are almost the same for the shale, while desorption rates are a few times greater than sorption rates in Yolo and Forbes soils. Mass-transfer coefficients for competitive displacement are considerably slower than those for desorption in Forbes soil and the shale. However, the mass-transfer rates for the two processes seem to be similar in Yolo soil, which has a NOM matrix comprising a relatively larger soft organic carbon fraction. The concept of "solute induced softening" is discussed as a mechanistic rationale for the experimental observations.  相似文献   

13.
According to a recent conceptual model for hydration-assisted sorption of organic compounds in natural organic matter (NOM), certain polar moieties of dry NOM are unavailable for compound sorption due to strong intra- and intermolecular NOM interactions. Water molecules solvate these moieties creating new sorption sites at solvated contacts. It is expected that the greater a compound's ability to undergo specific interactions with NOM, the greater will be the hydration-assisted sorption effect, because penetration of compounds into solvated contacts must involve competition with water at the solvated contact. To test this model, we compare the hydration effect on sorption kinetics and equilibrium for 4 compounds with differing abilities to undergo specific interactions with NOM. Sorption measured on Pahokee peat in aqueous systems was fast compared with n-hexadecane (dry) systems. No concentration effect on attainment of sorption equilibrium was observed. m-Nitrophenol exhibited the greatest hydration-assisted sorption effect, benzyl alcohol showed an intermediate effect and acetophenone and nitrobenzene showed no hydration-assisted sorption, on an activity scale. The extent of hydration-assisted sorption effect correlates with compound ability to undergo specific interactions. These results support the conceptual model and demonstrate the importance of polar NOM noncovalent links in organizing the NOM phase and in controlling the hydration effect on sorption of organic compounds.  相似文献   

14.
15.
Natural organic matter (NOM) hydration is found to change activity-based sorption of test organic compounds by as much as 2-3 orders of magnitude, depending on the compound and the specific NOM sorbent. This is demonstrated for sorption on humin, humic acid, and the NOM source material. Hydration assistance in organic compound sorption correlates with the ability of the sorbate to interact strongly with hydrated sorbents, demonstrating the important role of noncovalent polar links in organizing the sorbent structure. Differences in hydration effect between the sorbents are caused mainly by differences in compound-sorbent interactions in the dry state. For a given compound, hydration of the sorbent tends to equalize the sorption capability of the three sorbents. No correlation was found between the strength of sorbate-sorbent interactions or the type of sorbate functional groups and the extent of sorption nonlinearity. Sorption nonlinearity compared over the same sorbed concentration range is greater on the original NOM than on either of the two extracted fractions. In elucidating sorption mechanisms on hydrated NOM, it is important to explicitly consider the participation of water molecules in organic compound interactions in the NOM phase.  相似文献   

16.
Combined batch sorption and in situ X-ray absorption spectroscopy provide direct assessment of the mechanisms for Pb(II) sorption atthe calcite--water interface under low-temperature conditions. At low metal concentration, 1 microM initial Pb, X-ray absorption fine structure data indicate the formation of Pb mononuclear inner-sphere complexes at the surface. A first-shell Pb-O bond length of 2.34 A is consistent with nearest oxygen neighbors in 3- or 4-fold coordination with a distorted trigonal pyramidal or square pyramidal geometry with a stereochemically active electron lone pair. For high initial Pb concentrations, 20 and 60 microM Pb, precipitation of hydrocerussite and cerussite secondary phases dominates Pb partitioning. At 5 and 10 microM initial Pb, the sorption mechanism is dual in nature with persistence of the mononuclear adsorption complex combined with precipitation of a cerussite phase occurring prior to saturation of theoretically available surface sites. The formation of inner-sphere complexes implies strong metal interactions with the surface-the mechanistic reason for the affinity of Pb for calcite as observed in macroscopic studies. The geometry of the adsorbed complex can influence Pb coprecipitation, as a change to octahedral coordination is required for incorporation into calcite. The results provide the basis for predictions of Pb sequestration by calcite in natural systems.  相似文献   

17.
Dissolved organic ligands are well known to interact strongly with the calcite surface, altering precipitation and dissolution rates, crystal morphology, and possibly the ability of calcite to sequester metal contaminants. We show, using NMR spectroscopic techniques, that some of the citrate molecules present in a solution of precipitating calcite are incorporated structurally into the calcite crystal. Calcite grown by a seeded constant-addition method contains approximately 1 wt % coprecipitated citrate and yields 13C{1H} cross-polarization magic-angle spinning NMR spectra that contain broad peaks for citrate plus a signal from carbonate. Results from 13C{1H} heteronuclear correlation NMR experiments show that citrate is located in close spatial proximity to carbonate groups. In addition, calcite/citrate coprecipitates contain about 0.4 wt % excess water, which is not present as fluid inclusions, and some of which occurs as rigid structural water. These results suggestthat water and hydrogen-bonding interactions play a role in the interface between included organic molecules and the calcite host. Additional NMR data obtained for calcite coprecipitates of aspartic and glutamic acids suggest they are also incorporated structurally but at concentrations much lower than for citrate, whereas no evidence was found for phthalate incorporation.  相似文献   

18.
The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 microm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.  相似文献   

19.
Although the importance of natural organic matter (NOM) in the environment and in drinking water treatment is well-known, its structure is still ill-defined. The fragmentation patterns of NOM treated by irradiation (various wavelengths--185-400 nm), hydroxyl radicals, chlorine, ozone, and breakdown by a white rot fungus were studied to investigate the structure of chromophoric NOM molecules. Size exclusion chromatography was used to monitor the size distributions of NOM in two natural water waters and two NOM isolates. Three distinct fragmentation patterns were observed: ozone attack appeared to be nonsize specific, UV (> or = 254 nm) irradiation preferentially removed higher molecular weight chromophores, while processes involving hydroxyl radical showed intermediate size specificity. For the samples studied, the UV (> or = 254 nm) irradiation-induced fragmentation of NOM followed the patterns suggested by a simple trimer depolymerization model, supporting the viewpoint that NOM has repeating structural units joined by photolabile chemical bonds. The largest molecules reacted most rapidly, progressively fragmenting into slower reacting smaller molecules, which initially accumulated before breaking down to become nonchromophoric. This dependency of rate on molecular size appears to follow from the law of photochemistry which states the rate of reaction is proportional to the rate of light absorption: larger chromophores had higher molar absorptivities, absorbed more photons, and hence reacted faster than smaller chromophores.  相似文献   

20.
Various natural organic matter (NOM) constituents were evaluated in terms of their biodegradability, disinfection byproduct (DBP) formation potentials, and membrane fouling. The biodegradability of NOM was evaluated with respect to biodegradable dissolved organic carbon (BDOC) and its inhibition control. NOM was divided into (i) colloidal and noncolloidal NOM, using a dialysis membrane with a molecular weight cutoff of 3500 Da and (ii) hydrophobic, transphilic, and hydrophilic NOM constituents, using XAD-8/4 resins. The colloidal, and noncolloidal hydrophilic, NOM were identified as being more problematic than the other components, exhibiting relatively higher biodegradability and reactivity toward DBP formation potential. A higher biodegradability especially can provide a high risk of membrane biofouling, if a membrane is fouled by highly biodegradable NOM. Colloidal, and noncolloidal hydrophilic, NOM constituents were also shown as major foulants of negatively charged membranes due to their high neutral fractions. Filter adsorber (F/A) types of activated carbons were evaluated in terms of removals of NOM, DBP formation potential, and BDOC and were compared to conventional processes and a nanofiltration membrane. The F/A process exhibited a comparatively good efficiency, especially in DBP and BDOC control, but was not so good at removing NOM. This suggests that F/A could potentially be combined with a membrane process to minimize the DBP formation potential and bio-/organic-fouling (i.e., F/A process as a pretreatment for a membrane process).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号