共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对同一噪声源的多传感信号,采用自适应模糊神经网络系统(AFNNS)设计自适应噪声抵消器.采用AFNNS获取多路信息融合的权系数和自适应噪声抵消器的系数,基于AFNNS的自适应噪声抵消器不仅能获取信号的最佳估计,并且能克服模型和噪声存在的不确定性和不完备性.仿真结果表明,该自适应噪声抵消器的设计方法简单易行,去噪声效果优于基于平均法的去噪效果. 相似文献
3.
4.
传统的基于区域特征图像融合方法的一个难点是各源图像最佳权值的分配问题。该文利用径向基神经网络与T-S模糊推理模型具有函数等价性的特点,设计了一种模糊推理神经网络实现基于区域特征的图像融合,并用遗传算法优化网络参数。该网络能够自适应地动态获取优化的图像融合权值参数。仿真实验表明该算法有效可行,通过与传统的基于区域特征的图像融合算法相比,融合性能得到明显改善。 相似文献
5.
A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks 总被引:2,自引:0,他引:2
In this paper, we present a fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks (FAOS-PFNN), where a novel structure learning algorithm incorporating a pruning strategy into new growth criteria is developed. The proposed growing procedure without pruning not only speeds up the online learning process but also facilitates a more parsimonious fuzzy neural network while achieving comparable performance and accuracy by virtue of the growing and pruning strategy. The FAOS-PFNN starts with no hidden neurons and parsimoniously generates new hidden units according to the proposed growth criteria as learning proceeds. In the parameter learning phase, all the free parameters of hidden units, regardless of whether they are newly created or originally existing, are updated by the extended Kalman filter (EKF) method. The effectiveness and superiority of the FAOS-PFNN paradigm is compared with other popular approaches like resource allocation network (RAN), RAN via the extended Kalman filter (RANEKF), minimal resource allocation network (MRAN), adaptive-network-based fuzzy inference system (ANFIS), orthogonal least squares (OLS), RBF-AFS, dynamic fuzzy neural networks (DFNN), generalized DFNN (GDFNN), generalized GAP-RBF (GGAP-RBF), online sequential extreme learning machine (OS-ELM) and self-organizing fuzzy neural network (SOFNN) on various benchmark problems in the areas of function approximation, nonlinear dynamic system identification, chaotic time-series prediction and real-world regression problems. Simulation results demonstrate that the proposed FAOS-PFNN algorithm can achieve faster learning speed and more compact network structure with comparably high accuracy of approximation and generalization. 相似文献
6.
7.
基于模糊神经网络的信息融合技术研究 总被引:1,自引:1,他引:1
针对信息融合技术中目标融合识别的问题,根据人工神经网络和模糊系统的各自特点,形成一种模糊神经网络模型。首先将模糊系统用神经网络的结构表示,并采用相应的学习算法训练模糊神经网络实现模糊推理功能。最后对模糊神经网络模型进行仿真实验和结果分析。 相似文献
8.
为了解决传统图像恢复中存在的建模难的问题,提出了一种基于RBF神经网络的图像恢复算法,该算法利用RBF神经网络的非线性映射能力和适应性,通过记录退化过程的逆过程来恢复图像。首先改进RBF网络中心参数的确定过程,提出基于模糊调整的中心参数学习算法,然后用模糊调整后的网络进行图像恢复。仿真结果表明,改进的RBF网络可对典型退化图像进行令人满意的恢复。 相似文献
9.
10.
针对传统图像复原方法对先验知识的依赖性问题,提出一种基于混合神经网络的图像复原方法。混合神经网络由卷积神经网络(Convolutional Neural Network)与BP神经网络组成。首先,通过训练卷积神经网络初步建立退化图像与真实图像之间的非线性映射关系,再利用训练好的卷积网络模型提取特征向量作为BP神经网络的输入。最后,通过训练BP神经网络实现图像复原。实验表明,该方法具有较高可行性,在小尺度的模糊核上的复原效果优于现有方法。 相似文献
11.
为了快速地构造一个有效的模糊神经网络,提出一种基于扩展卡尔曼滤波(EKF)的模糊神经网络自组织学习算法。在本算法中,按照提出的无须经过修剪过程的生长准则增加规则,加速了网络在线学习过程;使用EKF算法更新网络的自由参数,增强了网络的鲁棒性。仿真结果表明,该算法具有快速的学习速度、良好的逼近精度和泛化能力。 相似文献
12.
基于Additive2multipl icative 模糊
神经网的ATM 网络拥塞控制 总被引:2,自引:0,他引:2
神经网的ATM 网络拥塞控制 总被引:2,自引:0,他引:2
考虑了模糊神经网络的学习功能,提出利用Additive-multiplicative模糊神经网络(AMFNN)对ATM网络进行拥塞控制的方案.在拥塞控制过程中,利用AMFNN模糊神经网络预测下一个将要到达流的特征,结合当前缓冲区的队列信息预测网络是否发生拥塞.一旦预测出将有拥塞发生,控制器则向源端反馈拥塞控制信息,信源根据拥塞信息适当降低传输速率,从而避免了拥塞的发生.仿真结果表明,该方法可改善网络对拥塞的实时处理能力,提高网络资源的利用率. 相似文献
13.
由于BP网络简单的拓扑结构和优秀的逼近能力,它已经被广泛地应用于预测和非线性系统的建模中。但是由于算法自身的不足,在实际应用中会产生很多问题。因此,BP网络的优化已经成为了一个重要的课题。为了提高BP网络的泛化能力,将模糊熵加入到BP网络的性能函数中,提出了基于模糊熵的BP算法。在实验中,将两种算法进行了对比,结果表明改进算法可以有效地提高测试精度,避免了过度拟合。 相似文献
14.
车载自组网的重要特征之一是节点的高移动性。针对节点的自由移动导致链路频繁断裂这一问题,在路由协议中选择稳定链路进行数据传输尤为重要。提出了一种具有链路稳定性的按需距离矢量路由协议(AODV)改进方案,即GF-AODV(AODV with GASA FNN)。该方案在路由发起和选择阶段,使用模糊神经网络对节点信息进行计算,得到节点稳定度以评估链路质量,并均衡考虑链路稳定性与跳数,选出稳定且跳数较小的路径。在路由维护阶段,针对实际环境使用遗传模拟退火算法对模糊神经网络的参数进行实时优化,以确保计算出的节点稳定度符合实际情况。实验表明,GF-AODV相对于AODV在平均时延、包投递率、路由开销等方面均有所改善。 相似文献
15.
基于神经网络和模糊逻辑的工业过程故障诊断与报警系统 总被引:4,自引:0,他引:4
用单一理论和方法对复杂系统进行故障诊断效果不太好.文章讨论了基于神经网络和模糊系统的故障诊断以及它们之间结合方式的特点,提出了一种保障工业生产安全可靠运行的有效方法:分级故障诊断算法 过程监控与报警,仿真并设计了基于工控网络的工业过程故障诊断与报警系统.研究表明基于径向基函数神经网络 模糊逻辑的算法具有较快的训练速度和较好的泛化能力,可识别多回路故障. 相似文献
16.
为了进一步提高网络入侵检测系统的检测性能,将模糊积分理论和神经网络技术应用到网络入侵检测中,提出了基于模糊积分的多神经网络融合模型MNNF。它的基本思想是按照TCP/IP属性集的类别不同将TCP/IP数据集分成三个不同属性集的子数据集,在不同属性集上训练形成不同的子神经网络,然后用模糊积分将多个子神经网络对TCP/IP数据的检测结果进行非线性融合形成最优判断。实验结果表明,MNNF模型应用在网络入侵检测中可以得到比单个神经网络更好的入侵检测性能。 相似文献
17.
基于神经网络的自适应模糊控制系统 总被引:1,自引:0,他引:1
张景元 《计算机工程与设计》2014,(10)
针对啤酒发酵过程中罐内温度控制问题,研究神经网络对模糊控制规则的优化方法,利用径向基函数神经网络对模糊控制规则进行优化,提高其自适应能力。以啤酒生产过程中主发酵阶段的数据作为输入样本,通过径向基函数神经网络进行学习训练,校正模糊控制规则,优化模糊控制器。优化前与优化后响应特性曲线的比较结果表明, RB F神经网络学习能力强,收敛速度快;模糊控制规则的完备性和一致性明显改善,控制器的响应速度快、超调量小、稳定性强、控制效果好。 相似文献
18.
由于退化图像的点扩散函数难以准确确定,提出一种基于Fourier正交基函数的前向神经网络图像复原模型,该模型以一组Fourier正交基为隐层神经元的激励函数,根据误差传递算法进行权值修正,达到收敛目标。给出Fourier神经网络及其相应的衍生算法的图像恢复实现步骤。实验表明,该方法能较好地实现图像的复原。 相似文献
19.
模糊小波基神经网络的机器人轨迹跟踪控制 总被引:14,自引:1,他引:14
提出一种模糊神经网络控制器并用于机器人轨迹跟踪控制.这种模糊神经网络利用了小波基函数作为隶属函数,可在线根据误差调整隶属函数的形状,使模糊神经网络具有更强的学习和适应能力.仿真与实验结果表明这种网络能很好的用于机器人的轨迹跟踪控制,具有很好的性能. 相似文献