首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
综合运用了H型缝隙耦合馈电技术和引入空气层技术展宽了天线的频带,设计出一个工作在Ku波段的宽频带微带天线单元并组成四单元阵列。该天线由两层介质板构成,并利用180°反相馈电抑制了高次模的耦合激励,降低了交叉极化电平。使用三维电磁场仿真软件(Ansoft HFSS)对微带天线进行仿真优化,仿真结果表明,天线单元性能良好,相对阻抗带宽(S11≤-10 dB)为8.5%,增益为8.05 dB。四单元天线阵列相对阻抗带宽(S11≤-10 dB)达到16.6%,增益为13.7 dB。天线阵列性能良好,设计方法具有很好的可扩展性。归纳总结出的介电常数计算式也具有普遍性。  相似文献   

2.
采用微带线在介质基片上模仿螺旋天线的走线形式,设计了一种433 MHz小型化螺旋形印刷天线,减小了天线的结构尺寸。采用仿真软件HFSS对天线的主要结构参数进行分析和优化,推导出了天线的最佳结构参数,并通过加载无源集总元件的方法改进了天线的阻抗性能。对回波损耗、增益进行了研究,结果表明:S(1,1)<-10 dB的有效带宽为3.4 MHz(431.5 MHz~434.9 MHz),在433 MHz谐振频点处的S11为-24 dB,有效增益为-4.14 dB。  相似文献   

3.
研究一种适用于无线传感器网络的短加载螺旋天线(SLH),有效提高了传感器节点天线的增益和抗干扰能力。通过有限元法进行数值仿真和设计,天线可达到较好的效果。天线工作在2.45GHz中心频率,回波损耗为-32.86dB,带宽为160MHz,最大增益为11.417dB,满足一般节点对天线的要求。测试结果显示,在不增加发射功率的情况下,短加载螺旋天线增加了通信距离,提高了无线传感器网络的覆盖能力和可靠性。  相似文献   

4.
设计了一种用于太赫兹通信系统的E形微带天线,并利用高频结构仿真软件(HFSS)对设计天线进行仿真。E形微带天线通过在矩形微带天线上加载两条平行缝隙槽以获得宽频带特性。仿真结果表明设计天线的-10dB相对带宽达到29%(从1.394THz到1.87THz),同时给出了该天线的驻波比曲线图和增益曲线图。研究结果显示该E形天线结构简单,能够满足无线通信系统的要求。  相似文献   

5.
本文针对无人机探测提出了一种低成本全电控阵列前端设计方案,为无人机探测雷达提供输入信号。该前端包括发射天线单元、接收天线阵列、北斗天线和下变频接收模块,本文对各个模块进行了分析论证,设计了发射天线、接收天线及阵列和下变频模块,对发射天线和接收天线进行了仿真,完成了下变频模块的设计和测试。发射天线增益2dB,接收天线法向增益3.58dB,阵列采用锥台结构,波束可实现较大空域的覆盖,下变频接收通道增益>40dB,工作频带内接收通道具有良好的幅相一致性。该方案具备波束扫描范围大、扫描速度快的能力,同时也面向无人机探测应用,具备低成本的特点。  相似文献   

6.
TPMS倒F螺旋天线的设计与实现   总被引:1,自引:0,他引:1  
在TPMS系统中,天线性能的好坏直接影响无线通信的效果.倒F螺旋天线具有全向性、增益高的特点.针对倒F螺旋全向天线进行研究与设计,用电磁仿真软件CST对天线模型进行了设计与仿真,并根据优化结果制作了实物模型.测试结果表明:谐振频率为433 MHz,回波损耗为-19.49 dB,测试结果与仿真结果吻合良好.  相似文献   

7.
基于目前对WSN(无线传感器网络)的需求,本文设计了一种工作在2.4GHz的小型化的矩形开槽微带贴片天线,由于采用了曲流技术,该天线比一般微带天线要小,当工作在2.4GHz时,其导波波长为70mm,天线尺寸为29mm×29mm,长宽均为导波波长的0.4倍。仿真与测试结果表明,实验结果与仿真结果基本吻合。天线的-10dB带宽为24MHz(2.38GHz-2.404GHz),天线的辐射特性较好,在-10dB带宽内,辐射增益均大于0dBi,而且在中心频率2.4GHz处达到最大值6dBi。  相似文献   

8.
根据ZigBee精确定位标志卡对天线的需求,设计了一种尺寸小、带宽高、辐射效率高的倒F天线。通过电磁场全波仿真软件对倒F天线进行仿真和性能评估,仿真结果表明,该倒F天线工作在2.405~2.484GHz的ZigBee频段内,天线回波损耗小于-10dB;在2.45GHz中心频率下,最大增益达2.5dB,且天线具有全向性。在煤矿巷道中的实际测试结果表明,该倒F天线能满足精确定位标志卡的实用需求。  相似文献   

9.
为满足在航空货物运输中射频识别(RFID)标签双频段工作的需要,文章提出了一种基于缝隙耦合结构的偶极子天线。所设计的天线满足-10dB回波损耗带宽在ISO18000-6频段是840MHz到940MHz(11%),在ISO18000-4频段是2.26GHz到2.56GHz(12%)。回波损耗的仿真结果和实际测量结构吻合良好。工作在900MHz和2.45GHz时能获得较好的方向图。  相似文献   

10.
针对目前我国原油含水率高的特点,对原油含水率的实时测量研究有着非常重要的研究意义.根据螺旋天线的基本原理设计了一款用于原油含水率测量的收发天线,该天线在2 ~3 GHz频段内,回波损耗(S11)均小于-10 dB,在2.45 GHz频点的传输损耗(S12)值为-11.3 dB,仿真增益达到11.4 dB.为了提高测试的精确度,对螺旋天线加了圆锥形的屏蔽罩,仿真结果均满足要求.进一步,根据仿真得到的天线参数制作了3款天线,每款天线的S11在带宽内均满足要求,并对任意两款天线进行S12的测量.测量结果表明,当距离为150 mm时,实测的其中两款S12值为12.1 dB,这与仿真的S12值相近,从而最终选定该组天线作为收发天线.  相似文献   

11.
This article proposes a novel rectenna design based on modified Hilbert fractal shaped microstrip antenna and Villard voltage doubler rectifying circuit for RF energy harvesting applications operating at Global System for Mobile Communications (GSM) 900 MHz band. The energy harvesting antenna is numerically optimized and fabricated on a Rogers RO4003 substrate of thickness 1.52 mm with a compact overall physical sizes of 80 mm × 82 mm (λ0/4.16 × λ0/4.06). Various geometric parameters and circuit component values of the proposed energy harvesting system are optimized in order to achieve a matched input impedance with good radiation performance of high gain for the input power level less than ?20 dBm. The numerical and experimental results point out the technical potential of the proposed rectenna design to be utilized in DC power supply modules of low voltage, low power electronic devices.  相似文献   

12.
This article proposes a multiple input multiple output (MIMO) antenna for 5G‐based vehicular communication applications. The designed MIMO antenna consist of two element iterated T‐shape antenna with defected ground structure (DGS) and split ring resonator. The antenna providing reflection coefficient S11 s11 ≤10 dB and bandwidth of 6.3 and 3.96 GHz over the frequency range of 26.83 to 33.13 GHz and 34.17 to 38.13 GHz, respectively. For the suitable future vehicular millimetric wave communications, this antenna achieved resonant frequencies at 28, 33, and 37 GHz. The designed antenna has achieved peak gain of 7.11 dB in operating band. It is fabricated on 12 x 25.4 x 0.8 mm3 Rogers RT duroid 5880 substrate with dielectric constant (εr) of 2.2. The antenna is placed on vehicle in virtual environmental using ANSYS SAVANT tool and the simulated results are showing good matching with the measured results of proposed MIMO antenna.  相似文献   

13.
Two planar antennas based on metamaterial unit‐cells are designed, fabricated, and tested. The unit‐cell configuration consists of H‐shaped or T‐shaped slits and a grounded spiral. The slits essentially behave as series left‐handed capacitance and the spiral as a shunt left‐handed inductance. The unit‐cell was modeled and optimized using commercial 3D full‐wave electromagnetic simulation tools. Both antennas employ two unit‐cells, which are constructed on the Rogers RO4003 substrate with thickness of 0.8 mm and εr = 3.38. The size of H‐shaped and T‐shaped unit cell antennas are 0.06λ0 × 0.02λ0 × 0.003λ0 and 0.05λ0 × 0.02λ0 × 0.002λ0, respectively, where λ0 is the free–space wavelength. The measurements confirm the H–shaped and T–shaped unit‐cell antennas operate across 1.2–6.7 GHz and 1.1–6.85 GHz, respectively, for voltage standing wave ratio (VSWR) < 2, which correspond to fractional bandwidth of ~140% and ~ 145%, respectively. The H‐shaped unit‐cell antenna has gain and efficiency of 2–6.8 dBi and 50–86%, respectively, over its operational range. The T‐shaped unit‐cell antenna exhibits gain and efficiency of 2–7.1 dBi and 48–91%, respectively. The proposed antennas have specifications applicable for integration in UWB wireless communication systems and microwave portable devices. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:88–96, 2016.  相似文献   

14.
In this article, dielectric‐loaded metal trapezoidal toothed log‐periodic antenna (TTLPA) is described. The dielectric material, Rogers RT/duroid 6010 (ε r = 10.2, tan δ = 0.0023) of thickness = 5 mm and of same shape as TTLPA is placed on top of conventional metal TTLPA which provides enhanced bandwidth and/or miniaturizes its aperture size without degradation in gain. The dielectric loading increases the effective length of antenna, and therefore, extends its operating frequency towards lower frequency side which miniaturizes aperture cross‐section of antenna with slight increase in its thickness. The simulated input and radiation characteristics of TTLPA without and with dielectric loading are compared. The comparative studies show that the proposed antenna is 38.78% smaller in respect of aperture cross‐section as compared with conventional antenna having almost identical bandwidth of 8.6 GHz (2.2–10.8 GHz) and gain variation over the range 1.5–6.1 dBi. The proposed antenna of aperture size 48.9 × 48.9 mm2 provides ?10 dB reflection coefficient bandwidth of 8.6 GHz (2.2–10.8 GHz) and gain variation in the range 1.3–5.7 dBi whereas the conventional antenna of same aperture size achieves somewhat reduced bandwidth of 7.6 GHz (3.2–10.8 GHz) and gain variation in the range 1.6–5.0 dBi over the operating frequency range.  相似文献   

15.
This article proposes an ultra‐wideband coplanar strips (CPS) rectangular spiral antenna that is fed by coplanar waveguide (CPW). The CPS is formed by gradually reducing the width of the CPW ground planes without the need of a balun. The antenna operates in the frequency band (3.5‐10.6 GHz) and has miniaturized size of 50 × 40 × 0.508 mm on a Rogers RO4003C substrate. The CPS spiral is terminated with a 100 Ω chip resistor for matching. A parametric study was performed to choose the CPS spiral dimensions. A good agreement is found between simulations and measurements in the radiation pattern and the return loss which was found to be better than 10 dB over the band. The measured peak gain ranges between 1 and 4.7 dBi.  相似文献   

16.
This article introduces a new RFID tag antenna designed for operation at 915 MHz. The proposed antenna is electrically small with dimensions (λ0/15) × (λ0/15). It features two vivaldi‐like apertures flipped with respect to each other around an axis parallel to their slotted edges. Each aperture is loaded with a meander line with multiple loops. The two sides of the proposed antenna are fed via a common slot line that is coupled electromagnetically to a perpendicular microstrip line at the other side of a dielectric substrate. The new antenna are fabricated using printed circuit board technology and the fabricated prototype is experimentally characterized. The optimization and theoretical investigation of the proposed antenna are performed via both HFSS and CST. The two simulators agree very well with each other and with measurements. The characteristics of the new RFID antenna are generally good, such as: small size (22 mm2), low profile (0.8 mm), flexible impedance matching, reasonable impedance bandwidth (8%), omni‐directional radiation, low cross‐polarization level (?20 dB at broadside), acceptable radiation efficiency (76%), and gain (?0.3 dBi). © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 23: 639–645, 2013.  相似文献   

17.
This research proposes a simple economical broadband circularly polarized antenna for universal ultra‐high frequency (UHF) RF identification (RFID) readers. The antenna utilizes a folded plate, a two‐corner truncated parasitic patch, and a ground plane. The folded plate, which is fabricated from one single plate, consists of a two‐corner truncated main patch, a wall patch, and a feed line, where the main patch is perpendicular to the wall patch, which is in turn perpendicular to the feed line. The folded plate enables currents to flow with a phase difference. The simulation results achieved an |S11| < ?15 dB of 805–966 MHz (18% bandwidth), a 3‐dB axial ratio (AR) bandwidth of 834–962 MHz (14% AR bandwidth), and a gain higher than 8.6 dBic. The measured results obtained an |S11| < ?15 dB of 806–970 MHz (18%), a 3‐dB AR bandwidth of 816–963 MHz (16%), and a gain greater than 7.8 dBic. The proposed antenna is applicable for universal UHF RFID readers as it covers the entire operating UHF RFID frequency range of 840–960 MHz. The parametric study and evolution of the proposed antenna are detailed in this research paper as well. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:575–587, 2016.  相似文献   

18.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS.  相似文献   

19.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.  相似文献   

20.
In this article, the intensive investigations are carried out on a low volume compact flexible antenna for wireless applications with a novel structure model. The proposed model has considered as an elliptical‐ring with split‐triangular patch (ERSTP) antenna with the coplanar waveguide feeding to achieve dual‐bands. The ERSTP antenna is designed with polyimide material having the volume (L a × W a × h) 99 mm3. The ERSTP antenna resonates with 2.60 GHz and 3.48 GHz frequencies with a reflection coefficient of ?21.92 dB and ?32.14 dB and a gain of 2.39 dBi and 1.75, dBi respectively. The impedance bandwidths are 100 MHz and 330 MHz observed at two frequency bands. The proposed ERSTP antenna has operated on mobile‐worldwide interoperability for microwave access (M‐WiMAX) and worldwide interoperability for microwave access (WiMAX) bands respectively. The simulated and measured results of ERSTP antenna are in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号