首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Results are presented for micromachined plastic waveguide bandpass iris filters for W-band applications using a cost-effective polymer micro hot embossing process in conjunction with metallic electroplating and sealing techniques. The prototype filter has an 8-μm thick electroplated gold layer on a polymeric WR-10 waveguide with a 5-cavity Chebyschev-type design. Measurement results show center frequency of 96.77 GHz with a bandwidth of 3.15%, a loaded quality factor 31.73 and an unloaded quality factor for a single cavity resonator is 1210.6, respectively. A minimum insertion loss of −1.22 dB and return loss of better than −9.3 dB have been measured over the entire passband.  相似文献   

2.
In order to improve the utilization of spectrum resources, dynamic frequency allocation technology has become a method of spectrum saving. The research of electric tunable filter has received much attention in recent years. Substrate integrated waveguide (SIW) is a new technology of microwave integration in the field. The innovation of this article is to combine the SIW miniaturization technology with tunable technology. In this article, a miniaturized symmetrically folded substrate integrated waveguide (SFSIW) filter is designed. Based on the miniaturization of SIW filter, the center frequency can be adjusted electrically and the measured data show that the tunable filter can achieve eight states under the condition that the bandwidth below ?3 dB remains approximately constant 300 MHz. The center frequency varies from 3.23 GHz to 3.9 GHz. The range of the filter's insertion loss is 1.2 dB to 2.04 dB, and the return loss is higher than 20.9 dB. This filter has practical value in the electronic countermeasures of military communication.  相似文献   

3.
In this article, a new Ka band microstrip to waveguide transition with combination of electric and magnetic coupling is introduced by using a quasi‐triangle structure. Consequently, the length of the proposed transition has been significantly diminished. A back‐to‐back prototype was fabricated based on the optimized dimensions to validate the design concept. The measured and simulated results are in a good alignment. The experimental results show that the return loss is better than 14.8 dB across the frequency range of 32‐40 GHz with an insertion loss of lower than 0.9 dB. The conversion efficiency for the single transition, therefore, is larger than 90.5%. Because of its broad operation bandwidth, low insertion loss, and compact size, the proposed embedded transition could find wide applications in most modern miniaturized MMIC devices and systems.  相似文献   

4.
介绍了一种使用多触点MEMS开关实现的新型可调微波MEMS低通滤波器,应用MEMS制作工艺在石英衬底上实现滤波器结构.滤波器基于慢波共平面波导周期性结构,具有尺寸小、插损低、可与单片微波集成电路工艺兼容等优点.滤波器截止频率的大小取决于MEMS开关的状态.实验结果表明,当MEMS开关受到激励时,低通滤波器的3-dB截止频率从12.5GHz转换至6.1GHz,带内纹波小于0.5dB,带外抑制大于40dB,开关的驱动电压在25V左右.  相似文献   

5.
This paper reports the design and microfabrication of an F-band rectangular waveguide filter. The filter was designed to have a double-cavity structure to achieve dual-mode filtering. The filter was modeled and simulated using the commercial software, HFSS. The waveguide filter was designed to have a central frequency of 100 GHz. The prototypes of the filter were fabricated using a technology based on ultra-violet lithography of thick resist of SU-8. The fabrication errors were found to be <5 μm in height and 1.3° in vertical angle deviations. The experimental results of the filters were found to be in agreement with those from numerical simulations, with the insert loss at 0.8 dB and the return loss better than 15 dB. The study has confirmed the feasibility of the filter and the fabrication technology. Because the structural material of this waveguide filter is polymer, batch fabrication with low cost replication using PDMS intermediate mold can be readily adopted as commonly practiced in the field of polymer-based microfabrication. This technology therefore may potentially reduce the production cost of millimeter wave filter dramatically.  相似文献   

6.
Substrate integrated waveguide (SIW) is a new structure for microwave transmission. In this paper, a planar folded sixth‐order SIW filter is designed with aggressive space mapping (ASM) algorithm. Its center frequency is 22 GHz, 3 dB bandwidth 1 GHz, and in‐band return loss 22 dB. The filter satisfies design specifications after four iterations, and is fabricated using micro‐electro‐mechanical systems (MEMS) technology with a chip size of 7.5 mm × 8.5 mm × 0.4 mm. Measurement results show that the center frequency of the filter measures at 22.2 GHz, 3 dB bandwidth at 1 GHz, insertion loss at 3.57 dB, return loss at 22 dB and out‐of‐band rejection at 40 dB.  相似文献   

7.
This paper presents a micro electromagnetic energy harvester which can convert low level vibration energy to electrical power. It mainly consists of an electroplated copper planar spring, a permanent magnet and a copper planar coil with high aspect ratio. Mechanical simulation shows that the natural frequency of the magnet-spring system is 94.5 Hz. The resonant vibration amplitude of the magnet is 259.1 μm when the input vibration amplitude is 14 μm and the magnet-spring system is at resonance. Electromagnetic simulation shows that the linewidth and the turns of the coil influence the induced voltage greatly. The optimized electromagnetic vibration energy harvester can generate 0.7 μW of maximal output power with peak–peak voltage of 42.6 mV in an input vibration frequency of 94.5 Hz and input acceleration of 4.94 m/s2 (this vibration is a kind of low level ambient vibration). A prototype (not optimized) has been fabricated using MEMS micromachining technology. The testing results show that the prototype can generate induced voltage (peak–peak) of 18 mV and output power of 0.61 μW for 14.9 m/s2 external acceleration at its resonant frequency of 55 Hz (this vibration is not in a low ambient vibration level).  相似文献   

8.
This paper presents the impedance behavior of the bulk acoustic wave solidly mounted resonators (BAW‐SMR). Also, it shows the effects of the addition of passive elements (L, C) to this type of resonators. In addition, this article presents a tunable BAW‐SMR filter realized in a ladder topology used for the 802.11b/g standard (2.40–2.48 GHz). Mainly, the filter fulfills the requirements for the WLAN 802.11 b/g standard, presenting a measured ?3.3 dB of insertion loss, –12.7 dB of return loss and selectivity higher than 33 dB at ±30 MHz of the bandwidth. This tunable BAW‐SMR filter has reduced dimensions (1035 × 1075 μm2). Moreover, we show how to shift the center frequency of this tunable filter toward higher and lower frequencies by adding passive elements. Measured shifts of ?1.3% of the center frequency (2.44 GHz) toward lower frequency and +0.6% of the center frequency toward higher frequencies are obtained. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

9.
A tunable bandstop filter using fractal electromagnetic bandgap (EBG) structure is designed, simulated and fabricated. The uniform fractal EBG (U-FEBG) structure is realized by replacing the etched rectangular holes with a Minkowski loop generator. A new technique of doubly tapered fractal EBG (DT-FEBG) structure is designed by non-uniform Kaiser distribution on the fractal structures. The Kaiser distribution improves the pass band performance and generates two distant bandgaps. The tunable bandstop filter is tuned by micromachined capacitive bridges. The propagation characteristic of the periodic microelectromechanical system (MEMS) bridges is determined by the dispersion behavior. Different types of parametric analysis are applied to investigate the performance of the MEMS bridges. Surface micromachining fabrication process is employed on the high resistivity silicon substrate to fabricate the filter. The measurement results for the DT-FEBG structure show insertion loss of 1.2 dB and the stop-band rejection of 44 dB. The tuning range of the U-FEBG structure is 1.1 GHz with insertion loss of 1.7–2.5 dB.  相似文献   

10.
Zheng  Tao  Xu  Gaowei  Luo  Le 《Microsystem Technologies》2017,23(6):2107-2111

Suspended inductors and 2.45 GHz BPF with patterned ground shields on the lossy silicon substrate by using Cu/BCB based wafer level packaging and bulk Si etching technologies were fabricated. Thick BCB interlayer is used as the supporting dielectric and the backside cavity is easily removed by using a two-step back-etching process. The fabricated 2.7 nH inductor has a maximum Q factor 49 at 8.2 GHz and high Q factors more than 22 in the broadband frequency range from 1 to 10 GHz. And the realized 2.45 GHz BPF has the insertion loss of 3.0 dB and the return loss of more than 14 dB at the pass band. It is also featured by more than 48 and 25 dB attenuation at 0.9 and 1.8 GHz respectively, with the second harmonic rejection being 33 dB.

  相似文献   

11.
This paper presents a fully integrated tunable lumped filter on silicon using a low-temperature silver micromachining process. A prototype 836-MHz bandpass filter with a 3-dB bandwidth of 5.9% and insertion loss of 4.8 dB is demonstrated in a second-order coupled-resonator configuration. Continuous tuning of 50 MHz is achieved by electrostatically actuating the lateral air-gap capacitors of the filter. To control the bandwidth while tuning the center frequency, reconfigurable termination impedance is proposed. As a proof of concept, a low-noise amplifier with tunable input impedance is designed to interface with the bandpass filter. The tunable impedance is realized at the input of the low-noise amplifier using a shunt positive metal–oxide–semiconductor transistor. The fabrication, design, and measurement results of the filter are detailed, and future research directions to improve the performance of such filters are discussed.$hfill$[2009-0031]   相似文献   

12.
A novel lateral RF MEMS capacitive switch was reported in this paper. This switch employed parylene as the dielectric material, taking advantages of its low temperature deposition and conformal coating. The low resistivity single crystalline silicon served as the material of the mechanical structures. The switch was fabricated by bulk micromachining processes with only two lithographic masks and a shadow mask. The dynamical response, parylene insulation performance, and RF performances of the fabricated switch were characterized, respectively. The switching time from the open state to the close state was 105 μs at a loaded voltage of 78 V, while 15.6 μs from the close state to the open state. The isolation was better than 15 dB from 20 to 40 GHz, and the maximal isolation was 23.5 dB at 25 GHz; while the insertion loss was below 1.4 dB at 25 GHz, when bonding wires connected the ground lines. These results verify that the parylene is a good candidate material to act as sidewall dielectric to realize the lateral capacitive switch.  相似文献   

13.
In this paper, a compact novel simple design of ultra‐wide bandpass filter with high out of band attenuation is presented. The filter configuration is based on combining an ultra‐wide band composite right/left‐handed (CRLH) band pass filter (BPF) with simple uni‐planar configuration of complementary split ring resonator (UP‐CSRR). By integrating two UP‐CSRR cells, the ultra‐wideband CRLH filter roll‐off and wide stopband attenuation are enhanced. The filter has 3 dB cutoff frequencies at 3.1 GHz and 10.6 GHz with insertion loss equals 0.7 dB in average and minimum and maximum values of 0.48 dB and 1.05 dB, respectively over the filter passband. Within the passband. The transition band attenuation from 3 dB to 20 dB is achieved within the frequency band 1.9 GHz to 3.1 GHz (48%) at lower cutoff and the frequency band 10.6 GHz to 11.4 GHz (7%) at upper stopband. Moreover, the filter has a wide stopband attenuation >20 dB in frequencies 11 GHz to 13.6 GHz (21%) and ends with 3 dB cutoff frequency at 14.8 GHz. Furthermore, the designed filter size is very compact (23 × 12 mm2) whose length is only about 0.17 λg at 6.85 GHz. The filter performance is examined using circuit modeling, full‐wave simulations, and experimental measurements with good matching between all of them.  相似文献   

14.
A compact reconfigurable rat‐race coupler with tunable frequency and tunable power dividing ratio is proposed for the first time. Varactors and two single control voltages are used to obtain both the tunable frequency and the tunable power dividing ratio in this article. The structure of the rat‐race coupler involves 50 Ω parallel‐strip lines only and a phase inverter is used for size reduction. Theoretical equations for the relationship among S‐parameters and the capacitance of varactors are derived. The graphic method is used to choose capacitance for the desired operation frequency and the desired power dividing ratio. For demonstration, a prototype is designed and fabricated. The measured results show that the rat‐race coupler's frequency and the power dividing ratio can be effectively tuned in 0.69 GHz ~ 0.81 GHz and 3 dB ~ 14 dB, respectively with isolation better than 20 dB, phase difference less than 7°and return loss better than 20 dB. The theoretical simulation, electromagnetic simulation, and measured results show good agreement in this design.  相似文献   

15.
In this study, a novel high selective UWB band pass filter (BPF) with dual notch band is presented. UWB BPF is realized using stub‐loaded multiple‐mode resonator (MMR). The MMR is constructed by loading a quintuple mode open stub at the centre in an asymmetric tri‐section stepped impedance resonator (ATSSIR). Five modes, including two odd modes and three even modes, placed within UWB band. Two transmission zeros generated by the fractal stub improve the passband selectivity greatly. Two half wavelength long fractal Hilbert resonators are embedded near I/O line to achieve notch bands at 5.1 and 5.9 GHz. Aperture‐backed interdigital coupled‐lines are implemented to improve the coupling. The proposed prototype is fabricated and tested. The measured insertion loss is observed to be within 1.5 dB over the passband. By virtue of two transmission zeros (TZs), on either side of the passband, at 5.1 and 5.9 GHz, respectively, the passband selectivity is achieved with measured roll‐off factor at around 34 dB/octave. The out‐of‐band rejection of the filter is greater than 22 dB up to 18 GHz. The simulated results are in good agreement with the measured responses.  相似文献   

16.
Tunable microstrip lowpass filters (LPFs) with a good performance are used in most telecommunication systems. In this article, a third‐order circuit with stepped impedance resonator is used to design LPF, and suppression cells are used to improve the performance of the filter in stopbands up to 20 GHz. The ?3 dB cut‐off frequency can be controlled in the range of 0.35 to 1 GHz with the tuning range of 96%. Rejection stopbands of 30 dB (type‐I) and 20 dB (type‐II) can be extended to more than 20 GHz. For the passband, the insertion loss variations are in the range of 0.35 to 2.12 dB. The proposed tunable LPF has a sharp roll‐off rate (42‐96 dB/GHz). The varactor‐tuned microstrip LPF is designed, simulated, fabricated, and measured. The results of simulation and measurement for the proposed LPF are in good agreement. The size of the proposed tunable LPF is small and the filter dimensions are equal to 0.267λg × 0.13λg.  相似文献   

17.
This article presents an inductively loaded radio frequency (RF) microelectromechanical systems (MEMS) reconfigurable filter with spurious suppression implemented using packaged metal‐contact switches. Both simulation and measurement results show a two‐state, two‐pole 5% filter with a tuning range of 17% from 1.06 GHz to 1.23 GHz, an insertion loss of 1.56–2.28 dB and return loss better than 13 dB over the tuning range. The spurious passband response in both states is suppressed below ?20 dB. The unloaded Q of the filter changes from 127 to 75 as the filter is tuned from 1.06 GHz to 1.23 GHz. The design and full‐wave simulation of a two‐bit RF MEMS tunable filter with inductively loaded resonators and monolithic metal‐contact MEMS switches is also presented to prove the capability of applying the inductive‐loading technique to multibit reconfigurable filters. The simulation results for a two‐bit reconfigurable filter show 2.5 times improvement in the tuning range compared with the two‐state reconfigurable filter due to lower parasitics associated with monolithic metal‐contact MEMS switches in the filter structure. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

18.
We present a simple, versatile method for the in-situ fabrication of membranes inside a microfluidic channel during a chip manufacturing process using only two extra slanted angle holographic exposure steps. This method combines the strengths of both inclined UV exposure and holographic lithography to produce micrometer-sized three-dimensional sieving structures. Using a common chip material, the photoresist material SU-8, together with this method, a leak-free membrane-channel connection is obtained. The resulting membranes are monodisperse, with a very well-defined pore geometry (i.e., microsieves with a pore diameter between 500 nm and 10 μm) that is easily controllable with the holographic set-up. The selectivity of in-situ fabricated microsieves with a pore diameter of 2 μm will be demonstrated using polystyrene beads of 1 and 3 μm.  相似文献   

19.
Magnetic-fluid core optical fiber   总被引:1,自引:1,他引:0  
We report the first fabrication of magnetic-fluid core optical fiber (MFCOF). Paraffin-based magnetic fluid is selected as the liquid and filled in a hollow core fiber with the core-diameter of 5 μm and the length of 20 cm. The optical properties of MFCOF were investigated by sending light into them. The wires allow multi-mode operation, and have an optical loss less than 0.6 dB/cm. In contradiction to the traditional liquid core optical fiber, the optical properties of MFCOF can be tunable under the external magnetic field, which may find applications in device physics on combined fields of magnetic fluid and nonlinear fiber optics.  相似文献   

20.
This article presents two new types of tunable filters with constant absolute bandwidth using varactor‐loaded microstrip resonators. First, the second‐ and third‐order Butterworth tunable filters are designed based on the parallel coupled‐line J inverters. Second, a fourth‐order Chebyshev tunable filter is designed based on the alternative J/K inverters, in this design, two adjacent resonators are coupled with each other through a short‐circuited transmission line as the K inverter. The proposed two topologies can be easily extended to high‐order tunable filter. Three tunable bandpass filters with J and alternative J/K inverters, respectively, are built with a tuning range from ~1.8 to ~2.3 GHz. The measured second‐order filter has a 3‐dB bandwidth of 160 ± 6 MHz and an insertion loss of 2.4–3.8 dB. The third‐order filter shows a 3‐dB bandwidth of 197 ± 5 MHz and an insertion loss of 3.8–4.8 dB. The fourth‐order filter shows a 3‐dB bandwidth of 440 ± 5 MHz and an insertion loss of 2.1–2.6 dB. For all the designed filters, the measured results are found in excellent agreement with the predicted and simulated results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:681–689, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号