首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Single layer TiO2 films deposited on BK7 glass substrates by the ion-assisted electron-beam evaporation technique have been characterized by phase modulated spectroscopic ellipsometry. The ellipsometry spectra were recorded in the wavelength range of 300–1000 nm. The measured spectra were then fitted with theoretically simulated curves generated assuming different model sample structures. Analyses were carried out separately in three different wavelength regimes, the transparent regime with no dispersion of refractive index (650–1000 nm), the transparent regime with dispersion of refractive index (400–650 nm) and the absorbing regime (300–450 nm). Modeling has been attempted with both homogeneous and inhomogeneous sample structures. For the inhomogeneous structure, both linear and non-linear variation of refractive index along the depth of the sample were used. Refractive indices of the samples were determined separately from the best-fit ellipsometric data in the above three wavelength regimes. Finally, variation of refractive index with the variation in ion beam currents has been studied.  相似文献   

2.
We studied two bidimensional square gratings of square holes formed in photoresist layers deposited on silicon wafers, both by classical spectroscopic ellipsometry (1.5-4.5-eV spectral range) at a constant incidence angle (70.7 degrees) and by angle-resolved Mueller polarimetry at a constant wavelength (532 nm). The grating period was 1 microm in both directions, and the nominal hole sizes were 250 and 500 nm, respectively. The ellipsometric spectra were fitted by rigorous coupled-wave analysis simulations with two adjustable parameters, the resist layer thickness and the hole size. These parameters were found to be in good agreement with independent scanning electron microscopy measurements. The experimental angle-resolved Mueller spectra were remarkably well reproduced by the simulations, showing that angle-resolved Mueller polarimetry has a great potential for grating metrology applications.  相似文献   

3.
Bilayer and multilayer thin films are becoming increasingly important in the development of faster, smaller and more efficient electronic and optoelectronic devices. One of the motivations of applying bilayer or multilayer structures is to modify the optical properties of materials. Atomic layer deposition (ALD) is a variant of Chemical Vapour Deposition that can produce uniform and conformal thin films with well controlled nanostructures. In this study, we have demonstrated new findings of the use of ALD fabricated bilayer TiO2/ZnO thin films with enhanced crystallinity and optical properties. TiO2 films have been deposited at 300 degrees C for 1000 (51 nm in thickness) or 3000 (161 nm in thickness) deposition cycles onto glass and Si substrates. ZnO films are subsequently deposited on the TiO2 layers at 280 degrees C for 500 deposition cycles (55 nm). The crystallinity and optical properties of the TiO2/ZnO thin films have been analysed by X-ray diffraction, photoluminescence, UV-Vis spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy. XRD diffraction pattern confirmed the presence of ZnO with wutrtize crystal structure and TiO2 with anatase structure. It shows that the crystallinity of the TiO2 films has been improved with the deposition of ZnO. The intensity of UV luminescence has increased by almost 30% for TiO2/ZnO bilayer as compared to the single layer TiO2. The possible mechanism for the enhancement of the optical properties of bilayer TiO2/ZnO thin films will be discussed.  相似文献   

4.
Sol–gel derived photonic bandgap films have been investigated as possible multilayer coatings for solar control glass applications. Multilayer Bragg mirrors, in particular, have been modelled by the Transfer Matrix method, designed to have either near-UV or near-IR reflectivity, but visible transparency, based on alternating aluminosilicate glass/titania quarter-wave stacks. Such composite multilayer structures have been deposited by sol–gel processing on selected glasses and other types of substrates and their optical characteristics have been measured by optical absorption and reflection spectroscopies, as well as spectroscopic ellipsometry to determine the single layer refractive index and thickness. The UV–visible-IR absorption and reflection characteristics of these multilayer coatings revealed solar control properties, due to the presence of peaks near ∼350–400 nm and ∼900–1000 nm, with reflectivities of the order of 70%, which appear promising for solar control application.  相似文献   

5.
As excimer lasers extend to deep-ultraviolet and vacuum-ultraviolet wavelengths at 193 and 157 nm, optical coatings experience the challenge of eliminating possible environmental contamination, reducing scattering loss, and increasing laser irradiation durability. Wide bandgap metal fluorides become the materials of choice for the laser optics applications. To understand the optical properties of nanostructure fluoride films, thin GdF(3) films grown on CaF(2) (111) substrates were evaluated by variable angle spectroscopic ellipsometry. An effective medium approximation model was used to determine both the film porosity and the surface roughness. Structural evolution of the GdF(3) film was revealed with improved ellipsometric modeling, suggesting the existence of multilayer structure, a densified bottom layer, middle layers with increasing porosity, and a rough surface. The nanostructure of the film and the surface roughness were confirmed by atomic force microscopy. The attraction of the nanostructure to environmental contamination was experimentally demonstrated.  相似文献   

6.
Amorphous and nanocrystalline TiO(2) thin films coated on a vitreous silica substrate by a solgel dip coating method are investigated for optical properties by spectroscopic ellipsometry (SE) together with transmission spectroscopy. A method of analysis of SE data to determine the degree of inhomogeneity of TiO(2) films has also been presented. Instead of the refractive index, the volume fraction of void has been assumed to vary along the thickness of the films and an excellent agreement between the experimental and calculated data of SE below the fundamental band gap has been obtained. The transmission spectrum of these samples is inverted to obtain the extinction coefficient k spectrum in the wavelength range of 300-1600 nm by using the refractive indices and parameters of structure determined by SE. The nonzero extinction coefficient below the fundamental band-gap energy (3.2 eV) has been obtained for the nanocrystalline TiO(2) and shows the presence of optical scattering in the film.  相似文献   

7.
The optical characteristics of amorphous zinc oxide (a-ZnO) thin films grown by radio frequency reactive magnetron sputtering on various substrates at temperature < 325 K have been investigated in the spectral range 340-1600 nm. The amorphous nature of the a-ZnO films was verified by X-ray diffraction and the optical constants were obtained by analysis of the measured ellipsometric spectra using the Cauchy-Urbach model. Refractive indices and extinction coefficients of the films were determined to be in the range 1.67-1.93 and 3.9 × 10− 8-0.32, respectively. The band edge of the films on Si (100) and quartz has been determined by spectroscopic ellipsometry (3.39 ± 0.05 eV) and spectrophotometric (3.35 ± 0.05 eV) methods, respectively. From the angle dependence of the p-polarized reflectivity we deduce a Brewster angle of 60.5°. Measurement of the polarized optical properties shows a high transmissivity (81%-99%) and low absorptivity (< 5%) in the visible and near infrared regions at different angles of incidence. Also, we found that there was a higher absorptivity for wavelength < 370 nm. This wavelength, ∼ 370 nm, therefore indicated that the band edge for a-ZnO thin films is about 3.35 eV.  相似文献   

8.
With reducing diamond grain size to nano-grade, the increase of grain boundaries and non-diamond phase will result in the change of the optical properties of chemical vapor deposition (CVD) diamond films. In this paper, the structure, morphology and optical properties of nanocrystalline diamond (NCD) films, deposited by hot-filament chemical vapor deposition (HFCVD) method under different carbon concentration, are investigated by SEM, Raman scattering spectroscopy, as well as optical transmission spectra and spectroscopic ellipsometry. With increasing the carbon concentration during the film deposition, the diamond grain size is reduced and thus a smooth diamond film can be obtained. According to the data on the absorption coefficient in the wavelength range from 200 to 1100 nm, the optical gap of the NCD films decreases from 4.3 eV to 3.2 eV with increasing the carbon concentration from 2.0% to 3.0%. From the fitting results on the spectroscopic ellipsometric data with a four-layer model in the photon energy range of 0.75-1.5 eV, we can find the diamond film has a lower refractive index (n) and a higher extinction coefficient (k) when the carbon concentration increases.  相似文献   

9.
In this work we present results on the ellipsometric study of SiOx films in the spectral range of 280-820 nm. The films were deposited by vacuum thermal evaporation of SiO onto Si substrates heated at 150 °C. To stimulate the formation of silicon clusters in the oxide matrix the films were annealed at temperatures 700, 1000 and 1100 °C in argon for 5, 15 and 30 min. By applying the Bruggeman effective-medium approximation theory and using multiple-layer optical models, from the ellipsometric data analysis the thickness, complex refractive index and composition of the films, as well as the size of the embedded Si nanocrystallites have been determined. Atomic-force microscopy imaging showed a very smooth surface, the roughness value of which correlated well with the top-layer thickness, determined from the ellipsometric data analysis.  相似文献   

10.
A method known as combined ellipsometry, which utilizes the simultaneous interpretation of the ellipsometric parameters determined for light reflected and transmitted by the air side and by the substrate side of thin films, was used to obtain an optical analysis of absorbing double layers deposited onto a non-absorbing substrate. It is shown that the use of this method enables the evaluation of all the optical parameters characterizing absorbing double layers consisting of a non- absorbing and an absorbing thin film. Combined ellipsometry can be used for analysing the double layers formed by two highly absorbing thin films in a reasonable way if this method is complemented by a precise auxiliary method, e.g. the Fizeau method. These conclusions are demonstrated by experimental results obtained for samples of the following double layers: MgF2/Al, Al/MgF2, TiO/Au and Au/Ni. The ellipsometric parameters were measured at a wavelength λ of 632.8 nm.  相似文献   

11.
A multilayer photoactive coating containing surface fluorinated TiO(2) nanoparticles and hybrid matrices by sol gel approach based on renewable chitosan was applied on poly(lactic acid) (PLA) film by a step wise spin-coating method. The upper photoactive layer contains nano-sized functionalized TiO(2) particles dispersed in a siloxane based matrix. For the purpose of improving TiO(2) dispersion at the air interface coating surface, TiO(2) nanoparticles were modified by silane coupling agent 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTS) with fluoro-organic side chains. An additional hybrid material consisting of chitosan (CS) cross-linked with 3-glycidyloxypropyl trimethoxy silane (GOTMS) was applied as interlayer between the PLA substrate and the upper photoactive coating to increase the adhesion and reciprocal affinity. The multilayer TiO(2)/CS-GOTMS coatings on PLA films showed a thickness of ~4-6 μm and resulted highly transparent. Their structure was exhaustively characterized by SEM, optical microscope, UV-vis spectroscopy and contact angle measurements. The photocatalytic activity of the multilayer coatings were investigated using methyl orange (MeO) as a target pollutant; the results showed that PLA films coated with surface fluorinated particles exhibit higher activity than films with neat particles, because of a better dispersion of TiO(2) particles. The mechanical properties of PLA and films coated with fluorinated particles, irradiated by UV light were also investigated; the results showed that the degradation of PLA substrate was markedly suppressed because of the UV adsorptive action of the multilayer coating.  相似文献   

12.
李秋俊  许煜寰 《功能材料》1999,30(2):175-176
用溶胶-凝胶技术制备了组分为6/65/35的PLZT非晶薄膜,这类薄膜具有类铁电性。在200 ̄700nm的波长范围内测试TLZT类铁电非晶薄膜和同样组分的透明陶瓷的椭偏光谱,得么了其光学常数谱(浙射率n谱和消光系数k谱),并对其吸边和一些光学性质进行了对比和讨论。  相似文献   

13.
The optical constants of ion-beam-sputtered SiC films have been measured by ellipsometry in the 190 to 950 nm range. The set of data has been extended both toward shorter and longer wavelengths with data in the literature, along with inter- and extrapolations, in order to obtain a self-consistent set of data by means of Kramers-Kr?nig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. A bandgap of 1.9 eV for the films was fitted from the obtained optical constants. A good global accuracy of the data was estimated through the use of various sum rules. The consistent dataset includes the visible to the extreme ultraviolet (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a high reflectance in parts of the EUV with desired performance at a secondary range, such as the visible. To our knowledge, this paper provides the first compilation of the optical constants of amorphous SiC films.  相似文献   

14.
A mathematical model for problems of optics for a layered medium with heterogeneous layers is discussed. Inverse problems of synthesis and optical characterization of layered media are stated as mathematical optimization problems and a solution to the same is discussed. Specialized software has been developed to enable solving these problems within the framework of the proposed model. The influence of volumetric nonuniformity of the carbon layer on the photometric and ellipsometric characteristics has been demonstrated theoretically. Modeling has been performed for heterogeneous multilayer interference coatings with a diamond-like top layer which serves as a functionally active optical layer as well as a protective film.  相似文献   

15.
利用TFCcal设计软件构建膜系结构, 采用溶胶-凝胶工艺和提拉法在超白玻璃上制备出厚度精确可控的宽光谱、高增透型SiO2/TiO2/SiO2-TiO2减反膜, 同时结合甲基三乙氧基硅烷(MTES)改性碱催化的SiO2溶胶, 通过提拉法一次制备出高透过率疏水型薄膜。研究表明, 高增透型三层宽光谱减反膜的理论膜层厚度依次为: 80.9 nm(内层SiO2-TiO2)、125.0 nm(中间层TiO2)、95.5 nm(外层SiO2), 其在400~700 nm可见光范围内平均透过率实际可高达97.03%以上。多层膜经过退火处理后, 膜面的水接触角高达131.5°, 同时陈化两个月以后的多层膜透过率仅下降0.143%, 表明制备的SiO2/TiO2/ SiO2-TiO2多层减反膜具有优良的疏水和耐环境性能。  相似文献   

16.
Optical properties of fluorinated silicon oxide (SiOF) films for optical waveguide in optoelectronic devices were investigated. The SiOF films are formed at 25°C by a liquid phase deposition (LPD) technique using a supersaturated hydrofluosilicic acid (H2SiF 6) aqueous solution. Two main absorption peaks corresponding to Si-O and Si-F bonds were observed at the wavenumbers of 1090 and 930 cm-1 in Fourier transform infrared (FTIR) spectrum, respectively. The LPD-SiOF films show very little content of water components such as Si-OH bonds and OH group. Although the transmittance for 600-nm-thick LPD-SiOF film gradually decreased from the wavelength around 700 nm, the relative transmittances to quartz glass are over 98% in the wavelength region from 350-2500 nm. The concentration of fluorine atoms in the LPD-SiOF film was about 5%, and the calculated composition was SiO1.85F0.15. The calculated refractive index from the polarizability for LPD-SiOF film was 1.430, and agrees very well with the measured value at the wavelength of 632.8 nm by ellipsometry. The dispersion of refractive index was evaluated and fitted to a three-term Sellmeier's dispersion equation. The zero dispersion wavelengths for the LPD-SiOF and thermally grown SiO2 films were 1.271 and 1.339 μm, respectively  相似文献   

17.
Multilayer dielectric coatings deposited by e-beam evaporation have been characterised by the phase modulated spectroscopic ellipsometer (PMSE). Measurements have been done on various multilayer thin films devices e.g., high reflectivity mirror, narrow band filter, beam combiner, beam splitter, etc. consisting of several bilayers of TiO2/SiO2. Results have been shown here for the first two samples. The measured Ellipsometry spectra are fitted with theoretical spectra generated assuming appropriate models regarding the sample structures. Optical constants of the substrates and the SiO2 films have been supplied and trial dispersion relations have been used for the optical constants of the TiO2 layers. The fittings have been done by minimising the squared difference (χ2) between the measured and calculated values of the ellipsometric parameters (ψ and Δ) and accurate information have been derived regarding the thickness and refractive indices of the different layers.  相似文献   

18.
Spectroscopic ellipsometry was used for the characterization of ion-deposited diamond-like carbon (DLC) films, including the determination of film thickness and optical properties of DLC. The measured spectra in the wavelength range from 300 to 850 nm were analyzed with an appropriate fitting model, which was constructed according to the nominal sample structure in which the optical properties of DLC were described by a Cauchy dispersion model. Reasonably good agreement was found between the measured and calculated spectra for all samples studied, indicating that the models used were appropriate and that the calculated results were reliable. The results of our analysis suggest that, under the same deposition conditions (i.e., same substrate temperature and same chamber pressure), the optical properties of ion-deposited DLC film did not change much even if the film was prepared with quite different gas flow ratios.  相似文献   

19.
Ellipsometry is a highly sensitive optical technique for coating characterization but usually presents multiple solutions in many cases. To prevent these, a method with addition of a spectral polarimetric technique is proposed. An initial film dispersion curve, independently of its physical thickness, is then provided using the same setup as spectral ellipsometry and at the same sample position, which later is used for thickness determination and dispersion refinement with increase of reliability of results. Characterization of thin TiO2 films with one and two ellipsometric solutions is shown to corroborate the validity of the proposed method.  相似文献   

20.
Ba(Ti0.95Zr0.05)O3 (BTZ) thin films grown on Pt/Ti/SiO2/Si(100) substrates were prepared by chemical solution deposition. The structure and surface morphology of BTZ thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). At 100 kHz, the dielectric constant and dissipation factor of the BTZ film are 121 and 0.016, respectively. The ellipsometric spectrum of the BTZ thin film annealed at 730 °C was measured in the range of wavelength from 355 to 1700 nm. Assuming a five-layer model (air/surface roughness layer/BTZ/interface layer/Pt) for the BTZ thin films on platinized silicon substrates, the optical constant spectra (refractive index n and the extinction coefficient k) of the BTZ thin films were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号