首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 46 毫秒
1.
在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微弱故障特征提取方法。该方法不依赖振动信号结构的先验知识,也无需采集大量的样本信号来训练字典,避免了传统稀疏表示设计冗余字典带来的缺乏物理意义,通用性差等缺陷。该方法的核心思想是把采集的振动信号与待提取的故障脉冲看作一维矩阵(向量),通过求解稀疏正则化的反问题得到故障脉冲信号。在建模上,通过引入非凸罚函数代替了传统最小化L1-norm融合套索算法,建立非凸罚正则化稀疏低秩矩阵模型,理论推导了所建立模型的严格凸性,并利用交替方向乘子法(Alternating direction method of multipliers,ADMM)对模型进行求解,同时讨论了模型参数对模型算法的收敛性问题、凸性与非凸性边界取值问题等。仿真算例与大型减速机圆锥滚子轴承诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的微弱冲击特征,而且改善了传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的脉冲能量大幅衰减与脉冲数目丢失问题。  相似文献   

2.
本文提出了计算具有分流叶片的径流式压气机叶轮三元流场计算方法。通过分流叶片前缘的S 2流面及分流叶片两侧分支流道中的流量在计算中经迭代自动确定。计算实例表明,应用本文计算方法可以得到流线位置和相对M数分布收使敛程度均相当好的数值解。并发现当分流叶片偏离中间位置时,流场比较好。  相似文献   

3.
针对传统低秩稀疏分解算法用于运动目标检测时,前景提取结果容易受噪声干扰以及检测结果不完整的问题,提出了一种新的低秩稀疏分解模型。考虑到视频前景目标呈结构化分布,以及动态背景对前景提取结果造成影响,该模型利用结构化稀疏范数对前景进行约束,且将稀疏部分所代表的运动区域进一步划分为动态背景部分与前景部分;然后采用广义交替方向乘子法对提出的模型进行求解,并分析了算法的复杂度;最后进行仿真实验将其应用到运动目标检测中。实验数据结果验证了提出的方法比其他基于低秩稀疏分解的运动目标检测方法更加稳定有效,更具有普适性,且对不同类型的噪声均具有一定的抗噪性。  相似文献   

4.
现有的空间目标图像波后处理方法多直接套用自然光学图像的复原技术,效果并不理想。本文通过分析空间目标图像的近似稀疏性和灰度值服从超拉普拉斯分布的独有特点,提出了一个采用正则化方法的非凸稀疏正则化空间目标图像复原模型。在数值计算过程中,根据交替方向乘数法将复原模型分解为两个子问题,对凸优化子问题采用快速傅里叶变换求解,对非凸优化子问题采用固定点迭代方法求解。文中设计了非凸稀疏正则化空间目标图像波后复原的完整算法流程,并针对模拟图像和真实空间目标图像进行了对比验证。结果显示:相对于最近的流行算法,提出方法的最大峰值信噪比提高了2dB,最大平均结构相似度提高了0.17,最大信息熵提高了3.85,图像清晰度提高了2.65。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号