首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel acrylic monomer, 4-cyanophenyl acrylate (CPA) was synthesized by reacting 4-cyanophenol dissolved in methyl ethyl ketone with acryloyl chloride in the presence of triethylamine as a catalyst. Copolymers of CPA with methyl methacrylate (MMA) at different composition was prepared by free radical solution polymerization at 70 ± 1 °C using benzoyl peroxide as an initiator. The copolymers were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The solubility tests were checked in various polar and non polar solvents. The molecular weight and polydispersity indices of the copolymers were estimated by using gel permeation chromatography. The glass transition temperature of the copolymers increases with increases MMA content. The thermal stability of the copolymer increases with increases in mole fraction of CPA content in the copolymer. The copolymer composition was determined by using 1H-NMR spectra. The monomer reactivity ratios determined by the application of linearization methods such Fineman–Ross (r 1 = 0.535, r 2 = 0. 0.632), Kelen–Tudos (r 1 = 0.422, r 2 = 0.665) and extended Kelen–Tudos methods (r 1 = 0.506, r 2 = 0. 0.695).  相似文献   

2.
The free-radical copolymerization of 2-methyl-N-1,3-thiazole-2-ylacrylamide monomer (TMA) with glycidyl methacrylate (GMA) was carried out in 1,4-dioxane at 65 ± 1 °C using azobisisobutironitril (AIBN) as an initiator. The copolymers were characterized by FTIR, 13C-NMR and 1H-NMR spectroscopic methods. The copolymer compositions were determined by elemental analysis. The weight-average and number-average molecular weights of the copolymers were obtained by gel permeation chromatography (GPC). The polydispersity indices of the polymers, determined with gel permeation chromatography, suggested a strong tendency for chain termination by disproportionation. Thermal properties of the polymers were also studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The monomer reactivity ratios were calculated according to the general copolymerization equation using Kelen–Tudos and Fineman–Ross linearization methods. The reactivity ratios indicated a tendency toward for alternation. The thermal decomposition activation energies of the polymers were evaluated by Ozawa method. The antibacterial and antifungal effects of the copolymers were also investigated on various bacteria and fungi. All the products showed moderate activity against different strains of bacteria and fungi.  相似文献   

3.
The methacrylate monomer 4-chloro-3‐methyl phenyl methacrylate (CMPM) was synthesized by reacting 4-chloro-3‐methyl phenol with methacryloyl chloride. The homopolymer and various copolymers of CMPM with n-butyl methacrylate were synthesized by free-radical polymerization in toluene at 70°C using 2,2′-azobis(isobutyronitrile) as the initiator. The CMPM monomer was characterized by Fourier transform IR and 1H-NMR studies. The copolymers were characterized by IR spectroscopy. The molecular weights (M n and M w) and the polydispersity index were obtained from gel permeation chromatography. The solubility and intrinsic viscosity of the homopolymer and the copolymers are also discussed here. The copolymer composition obtained from UV spectra led to the determination of reactivity ratios employing Fineman-Ross and Kelen-Tudos linearization methods. Thermogravimetric analyses of the homopolymer and the copolymers were carried out under a nitrogen atmosphere. The homopolymer and the copolymers prepared were tested for their antimicrobial activity against bacteria, fungi and yeasts.  相似文献   

4.
Copolymers of 4-Cinnamoylphenylmethacrylate (4-CPMA) and acrylamide (AA) were prepared in a ethylmethylketone (MEK) solution with benzoylperoxide (BPO) as a radical initiator at 70 °C. They were characterized by IR, 1H NMR, and 13C NMR techniques. Copolymer compositions were determined from 1H NMR spectra. The monomer reactivity ratios and the copolymer composition were determined by using Finemann–Ross (F–R) and Kelen-Tudos (K–T) methods. Thermogravimetric analysis of copolymers reveals that the thermal stability of the copolymer increases with an increase in the mole fraction of CPMA in the copolymer. The photocrosslinking of the copolymer were studied in solution.  相似文献   

5.
Summary A novel methacrylic monomer, 4-cyanophenyl methacrylate (CPM) was synthesized by reacting 4-cyanophenol dissolved in methyl ethyl ketone (MEK) with methacryloyl chloride in the presence of triethylamine as a catalyst. Copolymers of CPM with methyl methacrylate(MMA) at different composition was prepared by free radical solution polymerization at 70±1 °C using benzoyl peroxide as initiator. The copolymers were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The solubility of the polymers was tested in various polar and non polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in mole fraction of MMA content. The thermal stability of the copolymer increases with increases in mole fraction of CPM content in the copolymer. The copolymer composition was determined by using 1H-NMR spectroscopy. The monomer reactivity ratios estimated by the application of linearization methods such as Fineman-Ross (r1=2.524±0.038, r2=0.502±0.015), Kelen-Tudos (r1=2.562±0.173, r2=0.487±0.005) and extended Kelen-Tudos methods (r1=2.735±0.128, r2=0.4915±0.007).  相似文献   

6.
Copolymers of 4-cinnamoyl phenyl methacrylate (4-CPMA) and n-butyl methacrylate (BMA) were prepared in a methyl ethyl ketone (MEK) solution with benzoyl peroxide (BPO) as an initiator at 70°C. They were characterized with UV, IR, 1H-NMR, 13C-NMR, TGA, DSC and gel permeation chromatography. Copolymers were prepared by using different feed ratio of monomers. The monomer reactivity ratios determined by the method of Kelen-Tudos (K-T) were r1 (CPMA) = 2.32, r2 (BMA) = 0.56. The glass transition temperature of the copolymer shows a single Tg indicating the formation of random copolymer for all of the monomer feed composition. Thermogravimetric analysis in air has shown that the initial decomposition temperature of the copolymer was above 220°C. The photocrosslinking properties of the copolymer were examined by UV irradiation with polymer film.  相似文献   

7.
A new monofunctional BIS-GMA monomer, 4-(2-phenyl isopropyl)-3-phenoxy-2-hydroxy propyl methacrylate (monofunctional-BIS-GMA, hereafter abbreviated as MF-BIS-GMA) was synthesized as an adduct of 4-cumylphenol and glycidyl methacrylate for use as a dental monomer. The new monomer was characterized by FTIR, 1H, 13C (attached proton test, APT), UV, HPLC, and GPC. The viscosity and solubility of the new resin are also presented. The results were compared with the difunctional analog, BIS-GMA (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)]phenyl propane), which is commercially available and currently used in dental restorative materials. Both monomers were light-cured using 0.3% camphorquinone and 0.75% 2-(dimethylamino)ethyl methacrylate as photoinitiators. The extent of monomer conversion and the potential for residual monomer leachability were compared between the two cured resins. The monofunctional resin was found to yield higher monomer conversion values (74 vs. 39%) and lower leachable components (0.03 vs. 30.6 mol %) than those of the difunctional analog. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The newly designed methacrylic monomer series 4‐phthalimidocyclohexyl methacrylate (PCMA ), 4‐hexahydrophthalimidocyclohexyl methacrylate (HPCMA) and 4‐hexahydro‐3,6‐methanophthalimidocyclohexyl methacrylate (HMPCMA) were synthesized. Their homopolymers and methyl methacrylate (MMA) based copolymer series were polymerized by free‐radical polymerization. The copolymer compositions were characterized using 1H NMR spectra. The monomer reactivity ratios were calculated employing the Fineman?Ross (F‐T) and Kelen?Tüdös (K‐T) methods at low conversion. The values of r1 and r2 obtained by the F‐T and K‐T methods appear to be in close agreement (their average values are r1 = 1.3061 and r2 = 0.7336 for poly(PCMA‐co‐MMA), r1 = 1.5169 and r2 = 0.6840 for poly(HPCMA‐co‐MMA), r1 = 1.7748 and r2 = 0.5664 for poly(HMPCMA‐co‐MMA)) . The thermal stabilities and thermomechanical characteristics of the homopolymer and copolymer series were investigated by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical thermal analysis. © 2018 Society of Chemical Industry  相似文献   

9.
Summary The new monomer, 4α-acrylpodophyllotoxin(APPT) was synthesized from reaction of acryloyl chloride with the 4α-hydroxy of podophyllotoxin. The homo- and copolymer of new monomer with NIPAAm/AAm have been prepared by free radical polymerization. The new monomer and polymers have been characterized by IR, 1H- and 13C-NMR spectra. The homopolymer have low the molecular weight but it is not oligomer, and the molecular weight of copolymer increased with decreasing new monomer content. The composition of copolymers was close to the original monomer composition. The distinction of antitumor activity among podophyllotoxin, new monomer and homopolymer was smaller. The copolymer with NIPAAm (The PAPPT content (mol-%) =43.7%) did not exhibit any antitumor activity at present condition of experimentation. Received: 30 July 2001/ Revised version: 3 September 2001/ Accepted: 14 September 2001  相似文献   

10.
A tertierbutylphenoxy group containing methacrylate based monomer 2-(4-tert-butylphenoxy)-2-oxo-ethyl methacrylate (TBPOEMA) was synthesized by reacting 4-tertierbutylphenyl chloroacetate (TBPClAcO) with sodium methacrylate in acetonitrile. TBPClAcO was prepared by reacting tertierbutylphenol dissolved in benzene with chloroacetylchloride. The free-radical-initiated copolymerization of TBPOEMA, with methyl methacrylate (MMA) and styrene (ST) was carried out in dimethylsulphoxide (DMSO) solution at 65°C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer TBPOEMA and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition obtained from the 1H-NMR spectra led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Finemann–Ross and Kelen–Tüdös linear methods and the Behnken nonlinear least-squares method. The analysis of reactivity ratios revealed that MMA and ST are more reactive than TBPOEMA, and copolymers formed are statistical in nature. The molecular weights w and n) and polydispersity index of the polymers were determined using gel permation chromagtography. Thermogravimetric analysis of the polymers reveal that the thermal stability of the copolymers increases with an increase in the mole fraction of TBPOEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of TBPOEMA in the copolymers. The apparent thermal decomposition activation energies (E d) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

11.
The copolymerization of 2-(3-mesityl-3-methylcyclobutyl)-2-ketoethyl methacrylate monomer with acrylonitrile and styrene were carried out in 1,4-dioxane solution at 60 ○C using AIBN as an initiator. The copolymers were characterized by Fourier transform infrared, 1H-NMR, and 13C-NMR spectroscopic techniques. Thermal properties of the polymers were also studied by thermogravimetric analysis and differential scanning calorimetry. The copolymer compositions were determined by elemental analysis and 1H-NMR technique. The monomer reactivity ratios were calculated by the application of conventional linearization methods as a result of Fineman–Ross and Kelen–Tüdös to less than 1 for both monomers.  相似文献   

12.
Xiaohuan Zhang 《Polymer》2007,48(19):5507-5513
A series of well-defined graft copolymers with a polyallene-based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of living coordination polymerization of 6-methyl-1,2-heptadien-4-ol and atom transfer radical polymerization of methyl methacrylate. We first prepared poly(alcohol) with polyallene repeating units via 6-methyl-1,2-heptadien-4-ol by living coordination polymerization initiated by [(η3-allyl)NiOCOCF3]2, followed by transforming the pendant hydroxyl groups into halogen-containing ATRP initiation groups. Next, grafting-from route was used for the synthesis of the well-defined graft copolymer with excellent solubility: poly(methyl methacrylate) was grafted to the backbone via ATRP of methyl methacrylate. This kind of graft copolymer is the first example of graft copolymer via allene derivative and methacrylic monomer.  相似文献   

13.
In the first step of this study, 2-[(methoxy-1,3-benzothiazole-2-yl)amino]-2-oxoethyl methacrylate (MBAOM) monomer was synthesized and characterized. Then, a series copolymers were obtained by free-radical copolymerization method of MBAOM and glycidyl methacrylate, which is a commercial monomer at 65°C in 1,4-dioxane solvent. Structural characterizations of synthesized monomer and copolymers were carried out using Fourier transform infrared spectrophotometer and nuclear magnetic resonance spectroscopy (1H and 13C-NMR) instruments. The composition of the copolymers was estimated by elemental analysis. The thermal behaviors of all the polymers have been investigated using the differential scanning calorimetry and the thermogravimetric analysis. A kinetic study of the thermal decomposition of copolymers was investigated using thermogravimetric analyzer with non-isothermal methods selected for analyzing solid-state kinetics data. The activation energy (Ea) values were calculated via Kissinger and Ozawa models in a period of α = 0.10–0.80. Photostability of the copolymers was investigated. Also, the biological activity of the copolymers against different bacterial and fungal species has been investigated.  相似文献   

14.
A monomer 7-hydroxy-4-methyl-8-(4′-allyloxypiperazin-1′-yl) methylcoumarin with blue fluorescence was synthesized. The present investigation dealt with the synthesis and characterization of a coumarin monomer, containing a piperazine group. Then it was copolymerized with N-vinylpyrrolidone to obtain a water-soluble fluorescent copolymer (poly(Al-HMPC-co-VP)). The fluorescence characteristics of the polymer as a function of pH sensor were investigated in aqueous solution. It was found that the polymer displayed sensitive fluorescence signal amplification over a wide pH scale, which was ascribed to a photoinduced electron transfer from the piperazine receptor to the coumarin fluorophore. In addition, the influence of metal cations on the fluorescence intensity of poly(Al-HMPC-co-VP) were also studied. Obvious fluorescence enhancement was due to the photophysical response of the polymer to the presence of Ni2+ ion. The results suggest that copolymer may offer potential application as a reusable polymer for sensor protons and Ni2+ ion in aqueous solution.  相似文献   

15.
Reversible addition–fragmentation chain transfer (RAFT) dispersion copolymerization of methyl methacrylate (MMA) and tripropylene glycol diacrylate (TPGDA) was carried out in ethanol/water in the present work. S-1-Dodecyl-S′-(α,α-dimethyl-α″-aceticacid) trithiocarbonate (TTC) was used as a chain transfer agent to inhibit the occurrence of gelation. Branched poly(methyl methacrylate) (PMMA) particles with a very narrow size distribution was prepared by a two-stage method: the addition of a RAFT agent and a TPGDA agent to the system followed the nucleation stage. The particles had an average diameter within 1.9–2.7 μm and size distribution of 1.12–1.24. Molecular weight, molecular weight distribution, compositions and structure of copolymer were investigated by GPC and 1H NMR characterization. The GPC curves showed a bimodal distribution, indicating that MMA homopolymer was synthesised during the nucleation stage. In addition, 1H-NMR proved that MMA and TPGDA branched copolymer was synthesised after the nucleation stage. TPGDA fraction in the copolymer was lower than that in the initial monomer. It was determined that the intrinsic viscosity of the copolymer decreased with conversion and the Mark–Houwink exponent α of copolymer was reduced from 0.643 to 0.548, which further confirmed the branched structure of the copolymer.  相似文献   

16.
Jushan Lu  Xuewei Xia 《Polymer》2010,51(8):1709-271
pH-sensitive nanoparticles were prepared from a novel amphiphilic copolymer poly(2-phenyl-1, 3-dioxan-5-yl methacrylate-co-2-hydroxyethyl acrylate), poly(PDM-co-HEA), which was synthesized from the pH-sensitive hydrophobic monomer 2-phenyl-1, 3-dioxan-5-yl methacrylate (PDM) and the hydrophilic monomer 2-hydroxyethyl acrylate (HEA) with unit ratio (4:6) via radical polymerization. The random amphiphilic polymer could form nanoparticles in aqueous media with sizes of about 167 nm (PDI = 0.03). The morphology of the nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). When the nanoparticles solution was adjusted to pH = 5.5, sizes of the nanoparticles increased from 167 nm to about 800 nm within 24 h, characterized by DLS. The critical aggregation concentration (CAC) of the copolymer was determined to be 5.3 mg/L (1.7 × 10−7 M). The insoluble Nile Red could be delivered into the Hep3B cells by the nanoparticles and released in cytoplasm determined by fluorescence microscopy.  相似文献   

17.
A new iodine‐containing methacrylate monomer, 3,4,5‐triiodobenzoyloxyethyl methacrylate (TIBEM), was synthesized by coupling 2‐hydroxyethyl methacrylate (HEMA) with 3,4,5‐triiodobenzoic acid. The monomer was characterized by 1H nuclear magnetic resonance, infrared (IR), and ultraviolet spectra. Homopolymerization and copolymerization of the monomer with methyl methacrylate (MMA) were carried out using 2,2′‐azobis isobutyronitrile as the initiator. A terpolymer of TIBEM, MMA, and HEMA was also synthesized. The copolymers were characterized by IR, gel permeation chromatography, differential thermal analysis, and thermogravimetric analysis (TGA). High molecular weight polymers were produced with MMA at different feed compositions of TIBEM. The polymers were found to be freely soluble in common solvents for acrylic polymers. TGA showed little decomposition of the copolymer below 280°C. Copolymers showed good radiopacity at 25 wt % of TIBEM in the feed. These copolymers could find applications in medical and dental areas where radiopacity is a desirable feature of the implants. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2580–2584, 2003  相似文献   

18.
An oxetane-derived monomer, 3-acryloyloxy-methyl-3′-methyloxetane (AMO) was prepared from the reaction of 3-hydromethyl-3-methyloxetane with acryloyl chloride. The cationic ring-opening copolymerization of AMO with another oxetane-derived monomer, 3-(2-(2-(2-methoxyethylenoxy)ethylenoxy)ethylenoxy)-3′-methyloxetane (MEMO) was conducted in CH2Cl2 solution using BF3 · OEt2/1,4-butanediol as a co-initiator. The resulting copolymers were characterized by FTIR, 1H NMR and Gel Permeation Chromatography (GPC) analyses, and it was found that the enchained ratio of AMO in the copolymers is far lower than its feed ratio. They were crosslinked in situ via the radical polymerization of the vinyl group initiated by BPO after doping with lithium trifluoromethanesulfonimide (LiTFSI) to give rise to tough polymeric electrolyte films. The ionic conductivity was measured at varying content of AMO and different concentration of lithium salt LiTFSI by AC impedance, and a maximum ion conductivity of 1.44 × 10−5 S/cm at 30°C or 1.25 × 10−4 S/cm at 80°C was attained in the sample PAM 33 at the mole ratio of O: Li = 20. The DSC results indicated that T g decreases with the increase of the proportion of AMO in the copolymer, well consistent with the ion conductivity trend. The TGA (thermogravimetric analysis) measurement revealed that this kind of copolymer electrolytes is more thermostable than their liquid counterparts. __________ Translated from Transactions of Beijing Institute of Technology, 2006, 26(12): 1098–1103 [译自: 北京理工大学学报]  相似文献   

19.
A new polymerizable monomer, [4‐(9‐ethyl)carbazolyl]methyl methacrylate ( 2 ), was synthesized by reacting of methacrylic acid and 4‐hydroxymethyl‐9‐ethyl carbazole ( 1 ) by esterification procedure in the presence of N,N′‐dicyclohexylcarbodiimide. The resulting monomer was then polymerized free‐radically to form the poly(methyl methacrylate) containing 4‐(9‐ethyl)carbazolyl pend ent groups. Also, copolymerization of monomer 2 with various acrylic monomers such as methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, and n‐butyl acrylate by azobisisobutyronitrile as a free radical polymerization initiator gave the related copolymers in high yields. The structure of all the resulted compounds was characterized and confirmed by FTIR and 1H NMR spectroscopic techniques. The average molecular weight of the obtained polymers was determined by gel permeation chromatography using tetrahydrofurane as the solvent. The thermal gravimetric analysis and differential scanning calorimeter instruments were used for studying of thermal properties of polymers. It was found that, with the incorporation of bulky 4‐(9‐ethyl)carbazolyl substitutes in side chains of methyl methacrylate polymers, thermal stability and glass transition temperature of polymers are increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4989–4995, 2006  相似文献   

20.
Cinnamoyloxy ethyl methacrylate (CEMA) monomer was copolymerized with different monomer feed ratios of alkyl acrylate, such as dodecyl and octadecyl acrylate DDA and ODA, respectively. The monomers were copolymerized with different mole% to produce different compositions for each CEMA/alkylacrylate copolymer with low conversion. 1HNMR was used to determine the copolymer compositions. The monomer reactivity ratios of each CEMA/alkylacrylate copolymer were determined using Fineman-Ross and Kelen-Tudos methods. CEMA was copolymerized with DDA or ODA and crosslinked using azobis isobutyronitrile (AIBN) as the initiator and 1% weight content of either 1,1,1-trimethylolpropane triacrylate (TPT) or 1,1,1-trimethylolpropane trimethacrylate (TPTm) crosslinkers. The swelling parameters, such as the maximum oil absorbency (Q max), characteristic oil sorbency (Q), characteristic swelling time (T), and swelling rate constant (k), were evaluated for the synthesized sorbers. The network parameters, such as the polymer solvent interaction (χ), effective crosslink density (υ e), equilibrium modulus of elasticity (G T), average molecular weight between crosslinks (M c), and the theoretical crosslink density (υ t), were determined and correlated with the structure of the synthesized sorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号