首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric materials are used extensively, but their applications are limited because many of them are flammable. Therefore ways to make them flame retardant have received much attention. In this work, polypropylene (PP) was used as the matrix resin, aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) as flame‐retardant additives and zinc borate (ZB) as a flame‐retardant synergist. PP/Al(OH)3/Mg(OH)2 and PP/Al(OH)3/Mg(OH)2/ZB flame‐retardant composites were prepared with a twin‐screw extruder. The flame‐retardant properties, i.e. oxygen index (OI), burning velocity and smoke density, of the composites were measured. The results showed that OI increased with an increase of the filler content and decreased with an increase of the filler particle diameter. The burning velocity decreased with an increase of the filler content, while it first increased and then decreased with an increase of the filler particle diameter. The smoke density decreased with an increase of the filler content and increased with an increase of the filler particle diameter. There was a flame‐retardant synergy between Al(OH)3/Mg(OH)2 and ZB in the composites, and the smoke suppression effect was marked when ZB was added. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Polypropylene (PP) flame retardant composites filled with aluminum hydroxide (Al(OH)3), magnesium hydroxide (Mg(OH)2) as well as zinc borate (ZB) were prepared with a twin‐screw extruder. The melt volume flow rate (MVR) and density of the composites were measured by means of a melt flow rate instrument under experimental conditions with temperature of 180°C and load varying from 2.16 to 5 kg, to identify the effects of the particle size and content. The results showed that MVR of the composites decreased with an increase of the filler weigh fraction (?f) when ?f was more than 10 phr. The MVR decreased first and then increased with an increase of the filler diameter (d). The melt density (ρm) of the composites increased linearly with an increase of ?f and decreased linearly with the increase of d. In addition, the ρm increased with an increase of load. Under the same experimental conditions, the MVR decreased slightly while the ρm increased somewhat with addition of ZB for the PP/Al(OH)3/Mg(OH)2 composite systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Mg(OH)2 (MH) nanoparticles were synthesized by hydration of the light‐burned MgO at low temperature (70°C). Effects of additives, such as magnesium nitrate and magnesium acetate, on the size, morphology and agglomeration of MH particles were investigated. MH nanoparticles have platelet‐like structure and approximately 20–40 nm in thicknesses. The supersaturation degree plays an important role in magnesia hydration and is defined. When magnesium acetate was used as the additive, the hydroxyl ion can be homogeneously introduced into the solution. The size and morphology of MH nanoparticles are more homogeneous. Modified by titanate coupling agent, MH nanoparticles were used as the flame retardant for polypropylene (PP). The combustibility, mechanical properties and thermal behaviors of the PP/MH composites were characterized. The mechanical properties of PP/MH composites are not seriously deteriorated with increasing MH content. When the amount of MH fraction reached 65, the limiting oxygen index (LOI) value and UL 94 testing result of MH65 are 33.8 and V‐0 grading, respectively. The onset temperature (T10%) and the maximum thermal decomposition temperature (Tmax) of MH65 separately increased by approximately 100°C and 77°C than those of neat PP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The melt apparent shear viscosity (ηa) of polypropylene (PP) composites filled with aluminum hydroxide [Al(OH)3] and magnesium hydroxide [Mg(OH)2] was measured by means of a capillary rheometer under experimental conditions of temperature ranging from 180 to 200°C and apparent shear rate varying from 10 to 2 × 103 s−1, to identify the effects of the filler particle content and size on the melt viscosity. The results showed that the melt shear flow of the composites obeyed the power law and presented pseudoplastic behavior. The dependence of ηa on temperature was consistent with the Arrhenius equation. The sensitivity of ηa for the composite melts to temperature was greater than that of the unfilled PP, and weakened with increasing apparent shear rate. The ηa increased linearly with an increase of the weigh fraction of the flame retardant, especially in the low apparent shear rate region. The ηa of the composites decreased slightly with an increase of particle size of flame retardant. Moreover, the variation for the ηa with particle size of flame retardant was much less than with apparent shear rate under these test conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The flammability and mechanical properties of Al(OH)3/BaSO4/polypropylene (PP) composites were investigated. The flow, morphological, and thermal properties were also analyzed by melt flow index (MFI), Scanning electron microscopy (SEM), and Differential scanning calorimeter (DSC) studies, respectively. Total filler amount was fixed at 30 wt % to optimize physical characteristics of the composites. In addition to the flame retardant filler Al(OH)3, BaSO4 was used to balance the reduction in impact strength at high filler loadings. Substantial improvement in mechanical properties was achieved for 20 wt % Al(OH)3 (i.e., 10 wt % BaSO4) composition while maximum flammability resistance was obtained for 30 wt % Al(OH)3 composite. SEM studies showed that the presence of aggregated Al(OH)3 particles led to low interfacial adhesion between them and PP matrix ending up with decreased mechanical strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Modified Mg(OH)2/polypropylene (PP) composites were prepared by the addition of functionalized polypropylene (FPP); and acrylic acid (AA) and by the formation of in situ FPP. The effects of the addition of FPP and AA and the formation of in situ FPP on the mechanical properties of Mg(OH)2/PP composites were investigated. Experimental results indicated that the addition of Mg(OH)2 markedly reduced the mechanical properties of PP. The extent of reduction in notch impact strength of PP was higher than that in flexural strength and tensile strength. However, tensile modulus and flexural modulus increased with increased Mg(OH)2 content. The addition of FPP facilitated the improvement in the flexural strength and tensile strength of Mg(OH)2/PP composites. The higher the Mg(OH)2 content was, the more significant the effect of FPP was. The incorporation of AA resulted in further increased mechanical properties, in particular the flexural strength, tensile strength, and notch impact strength of Mg(OH)2/PP composites containing high levels of Mg(OH)2. It not only improved mechanical properties but also increased the flame retardance of Mg(OH)2/PP composites. Although the mechanical properties of composites modified by the formation of in situ FPP were lower than those of composites modified by only the addition of AA in the absence of diamylperoxide, the mechanical properties did not decline with increased Mg(OH)2 content. Moreover, the mechanical properties increased with increasing AA content. The addition of an oxidation resistant did not influence the mechanical properties of the modified Mg(OH)2/PP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2139–2147, 2003  相似文献   

7.
This study investigates the incorporation of castor oil–based rigid polyurethane foam with mineral fillers feldspar or kaolinite clay in order to enhance the mechanical, thermal, and flame retardant properties. Influence of mineral fillers on the mechanical strength was characterized by compressive strength and flexural strength measurement. Thermogravimetric analysis (TGA) was performed to diagnose the changes in thermal properties, while cone calorimeter test was performed to ascertain the flame retardancy of the mineral filler–incorporated rigid polyurethane foam composites. Results showed that the foams incorporated with mineral filler demonstrated up to 182% increase in compressive strength and 351% increase in flexural strength. Thermal stability of these composite foams was also found to be enhanced on the incorporation of kaolinite clay filler with an increase in 5% weight loss temperature (T5%) from 192°C to 260°C. Furthermore, peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decreased on the incorporation of mineral filler in the rigid polyurethane foam. So mineral fillers are ascertained as a potential filler to enhance the mechanical, thermal, and flame retardant behaviors of bio‐based rigid polyurethane foam composites.  相似文献   

8.
制备了PP(聚丙烯)/Al(OH)_3/Mg(OH)_2/硼酸锌和PP/Al(OH)_3/Mg(OH)_2阻燃复合材料,并测定了复合材料的氧指数(OI)、水平燃烧速度和烟密度。结果表明,OI随着阻燃剂质量分数的增加而升高,随着粒径的增大而降低;燃烧速度随着阻燃剂用量的增加而下降,随着粒径的增大先升后降;烟密度随着阻燃剂用量的增加而降低,随着粒径的增大而增大;添加硼酸锌后具有显著的抑烟效果。  相似文献   

9.
Effects of fiber content, size, and weave form, and addition of particles on wear behaviors of epoxy composites are studied widely, while little investigation is paid on thermal effect in friction. In this study, effects of Al(OH)3 powder on wear behavior of glass fiber reinforced epoxy composites are investigated. The experimental results show that within 6 wt%, the addition of Al(OH)3 powder could decrease the friction surface temperature, friction coefficient, and wear mass loss of the composites. The decrease is attributed to the heat absorption when Al(OH)3 powder decomposes. However, when the content of Al(OH)3 powder increases to 9 wt%, the temperature, the friction coefficient, and the wear mass loss increase to nearly equal to those of pure epoxy resin-based composites. It is considered resulting from the decrease in mechanical property, which could lead to more serious fatigue wear. In a word, within a proper content, the addition of Al(OH)3 powder in epoxy could increase the resistance to wear and friction.  相似文献   

10.
In this article, supercritical carbon dioxide (scCO2) is used to form a high density microcellular foam structure to reduce the polymer use and facilitate dispersion of Mg(OH)2 and Nanoclay fillers. A twin-screw extruder system was used to predistribute the inorganic filler from the PP polymer, resulting composite PP/filler pellets. This followed by the use of a single-screw extruder wherein supercritical carbon dioxide is introduced in the formulation. Finally the resulting foam PP/filler/CO2 pellets are injection molded into test samples. The structure and properties of the composites are characterized using a scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and density measurements. Furthermore, PP/Clay/Mg(OH)2 polymer composites are subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, % elongation, Izod impact strength, hardness, Heat deflection temperature (HDT), Vicat softening point and Melt flow index (MFI).  相似文献   

11.
The chemical and thermal structure of a Mache-Hebra burner stabilized premixed rich CH4/O2/N2 flame with additives of vapors of triphenylphosphine oxide [(C6H5)3PO], hexabromocyclododecane (C12H18Br6), and ethyl bromide (C2H5Br) was studied experimentally using molecular beam mass spectrometry (MBMS) and a microthermocouple method. The concentration profiles of stable and active species, including atoms and free radicals, and flame temperature pro.les were determined at a pressure of 1 atm. A comparison of the experimental and modeling results on the flame structure shows that MBMS is a suitable method for studying the structure of flames stabilized on a Mache-Hebra burner under near-adiabatic conditions. The relative flame inhibition effectiveness of the added compounds is estimated from changes in the peak concentrations of H and OH radicals in the flame and from changes in the flame propagation velocity. The results of the investigation suggest that place of action of the examined flame retardants is the gas phase. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 12–20, September–October, 2007.  相似文献   

12.
Some rigid polyurethane foam (RPUF) composites modified with microencapsulated red phosphorus (MRP), magnesium hydrate (Mg(OH)2), glass fiber (GF), and hollow glass bead (HGB) were prepared. The influence of the MRP, Mg(OH)2, GF, and HGB on the flame‐retardant, combustion, and mechanical properties of the filled RPUF composites was investigated. The results showed that the flame‐retardant and the combustion properties of the composites were obviously improved, the limiting oxygen index, half burning time and the residual mass/original mass ratio increased with increasing MRP/Mg(OH)2 weight fraction, especially in case of MRP/Mg(OH)2 weight fraction of 8 wt %; the carbon monoxide (CO) concentration decreased with increasing MRP/Mg(OH)2 weight fraction, When the composites were loaded appreciate content of the HGB and the GF, the maximum torque and compressive strength of the composites were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46551.  相似文献   

13.
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d 33], electromechanical coupling coefficient [k p], and remnant polarization [P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.  相似文献   

14.
To investigate the interfacial interaction of AI(OH)3/polypropylene (PP) composites modified by in situ‐functionalized polypropylene (FPP), AI(OH)3/polypropylene (PP) composites containing a low AI(OH)3 content, modified by in situ‐grafted acrylic acid, were prepared by a one‐step melt‐extrusion process. The effect of in situ FPP on the crystallization and melting behavior, crystalline morphology of the composites, and interfacial interaction between the filler and PP was investigated. The crystallization and melting behavior and crystalline morphology of PP in the composites depended upon the interfacial physical [heterogeneous nucleation of AI(OH)3; cocrystallization and compabilitization of PP with in situ FPP] and the interfacial chemical interaction between both the components in the composites. FTIR results indicated that there exists a chemical reaction between AI(OH)3 and in situ FPP. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 110–120, 2002; DOI 10.1002/app.10270  相似文献   

15.
超微细Mg(OH)2复合阻燃改性PP-R的研究   总被引:7,自引:0,他引:7  
研制了超微细Mg(OH)2和少量的十溴联苯醚复配阻燃剂与无规共聚聚丙烯(PP-R)的填充共混复合材料,研究了复配阻燃剂的用量和硅烷偶联剂对复合材料力学性能和阻燃性能的影响。结果表明,复配阻燃剂用量的增加对材料拉伸强度有较明显的影响,用量在10份左右时缺口冲击强度达到最大;用硅烷偶联剂处理的填料可改善复合材料的各项性能。复配阻燃剂显著提高了复合材料的阻燃性能,在用量为15份时,氧指数达到27%;用量超过20份,垂直燃烧性为FV-1级。微量发烟。  相似文献   

16.
Four kinds of magnesium hydroxide (Mg(OH)2) with different particle sizes are chosen and mixed with ethylene vinyl acetate copolymer (EVA) to investigate the effect of particle size on the flame retardancy of composites, which is evaluated by limiting oxygen index (LOI) testing, horizontal fire testing, and cone calorimeter. When Mg(OH)2 filling level changes from 35 to 70 wt %, the composites filled with nano‐Mg(OH)2 do not always possess the best flame retardancy, and among the composites filled with micro‐Mg(OH)2, the composites filled with 800 mesh Mg(OH)2 show the best flame retardancy; however, the composites filled with 1250 mesh presents the worst one. So the effect of particle size on the flame retardancy of micro‐Mg(OH)2‐filled EVA is not linear as expected. All the differences are thought to result from both particle size effect and distributive dispersion level of Mg(OH)2. To prepare the composites with better mechanical properties and flame retardancy, authors suggested that Mg(OH)2 of smaller size should be chosen as flame retardant, and good dispersion of Mg(OH)2 particles also should be assured. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4461–4469, 2006  相似文献   

17.
Polypyrrole (PPy) and its composites with vanadium pentoxide (V2O5) were synthesized in aqueous medium by chemical oxidation polymerization using FeCl3·6H2O as an oxidant. The materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometry (XRD), thermogravimetry analyzer (TGA), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV/visible spectroscopic techniques and LCR-meter. The FT-IR results confirmed the successful synthesis of PPy and PPy/V2O5 composites. The XRD study showed the amorphous and crystalline nature of PPy and PPy/V2O5 composites, respectively. The TGA analysis showed slight increase in the thermal stability of the composites. The SEM data verified the porous nature of PPy and the composites. The UV/visible spectrometry confirmed the doping of PPy in composites. The electrical properties of the materials displayed their semiconducting nature. The resistance of the samples was found to be dependent on temperature and the contents of V2O5 in the composites.  相似文献   

18.
Al(OH)3和Mg(OH)2阻燃EVA性能的研究   总被引:1,自引:0,他引:1  
选用形貌、粒径尺寸及分布相近的两种无机阻燃剂氢氧化铝(Al(OH)3)和氢氧化镁(Mg(OH)2),研究了二者用量对乙烯-醋酸乙烯酯共聚物(EVA)复合材料的力学性能和阻燃性能的影响,并比较了添加红磷的复合材料的力学性能和阻燃性能。研究表明:Al(OH)3和Mg(OH)2用量对复合材料性能影响比较相似,随着阻燃剂用量的增加,复合材料的阻燃性能提高,拉伸强度增加,但断裂伸长率下降;通过锥形量热仪数据看出:Al(OH),的点燃时间短,最大热释放速率和平均热释放速率低,火行为指数大,阻燃效果比Mg(OH)2好;红磷的加入对复合材料力学性能影响不大,而对阻燃性能影响较大。Mg(OH)2与红磷复配能提高复合材料的氧指数,但是,从水平和垂直燃烧角度考虑,Al(OH)3与红磷之间的阻燃协效效果更好。  相似文献   

19.
Interfacial, thermodynamic, and morphological properties of decaoxyethylene n-dodecylether [CH3 (CH2)11(OCH2CH2)10OH](C12E10) in aqueous solution were analyzed by tensiometric, viscometric, proton nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) techniques. Dynamic and structural aspects at different temperatures in the absence and presence of sugars at different concentrations were measured. Critical micelle concentrations (CMC) were determined by surface tension measurements in the presence of ribose, glucose, and sucrose. The heat capacity (ΔC p.m.), transfer enthalpy (ΔH m.tr.), transfer heat capacities (ΔC p.m.tr.), micellization constant (K m ), Setchenow constant (K S N ), and partition coefficient (q) were determined and discussed as an extension of the usual thermodynamic quantities of micellization and adsorption at the air-water interface. An enthalpy-entropy compensation effect was observed with an isostructural temperature (T c ) of about 310 K for both micellization and interfacial adsorption. SANS measurements were taken to elucidate structural information, viz., aggregation number (N agg), shape, size, and number density (N m ) on C12E10 micelles in D2O at different concentrations of sugars (0.05, 0.02, 0.3, and 0.5 M) and temperatures (30, 45, and 60°C). Intrinsic viscosity gave the hydrated micellar volume (V h ), volume of the hydrocarbon core (V c ), and volume of the palisade layer of the oxyethylene (OE) unit (V OE). SANS, as well as rheological data, supported the formation of nonspherical micelles with or without sugars. By SANS, we also observed that at the studied temperature intervals, oblate ellipsoid micelles changed into prolate ellipsoids and the number density of micelles decreased with an increase in temperature both in the presence and in the absence of sugars and also on increasing the concentration of sugars. Proton NMR showed a change in chemical shift of the OE group of micelles above the CMC. We also studied the phase separation of C12E10 by sugars in cloud point measurements.  相似文献   

20.
Al(OH)3/polypropylene (PP) composites modified by polypropylene grafted with acrylic acid (FPP) were prepared by melt extrusion. Effect of PP grafting with acrylic acid on mechanical properties and fracture morphology of Al(OH)3/polypropylene composites were investigated. Although incorporation of Al(OH)3 reduced the mechanical properties of PP, addition of FPP increased the mechanical properties of Al(OH)3/PP composites. It is suggested that addition of FPP improve the dispersion of Al(OH)3 and the interfacial interaction between filler and matrix. Mechanical properties of Al(OH)3/FPP/PP composites depend on the grafting rate and the content of FPP. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2617–2623, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号