首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal precursor cells persist in the adult vertebrate forebrain, residing primarily in the ventricular/subventricular zone (SZ). In vivo, SZ precursors yield progeny which may die or give rise to glia. Yet they may also generate neurons, which are recruited to restricted regions such as the avian telencephalon and mammalian olfactory bulb. The survival of neurons arising from adult progenitors is dictated by both the availability of a permissive pathway for migration and the environment into which migration occurs. In the songbird higher vocal center (HVC), both humoral and contact-mediated signals modulate the migration and survival of new neurons, through an orchestrated set of hormonally regulated paracrine interactions. New neurons of the songbird brain depart the SZ to enter the brain parenchyma by migrating upon radial guide fibers, which emanate from cell bodies in the ventricular epithelium. The radial guide cells coderive with new neurons from a common progenitor, which is widespread throughout the songbird SZ. Neural precursors are also widely distributed in the adult mammalian SZ, although it is unclear whether avian and mammalian progenitor cells are homologous: Whereas neuronal recruitment persists throughout much of the songbird forebrain, in mammals it is limited to the olfactory bulb. In humans, the adult SZ appears to largely cease neurogenesis in vivo, although it, too, can produce neurons in vitro. In both rats and humans, the differentiation and survival of neurons arising from the postnatal SZ may be regulated by access to postmitotic trophic factors. Indeed, serial application of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) has allowed the generation and maintenance of neurons from the adult human SZ. This suggests the feasibility of inducing neurogenesis in the human brain, both in situ and through implanted progenitors. In this regard, using cell-specific neural promoters coupled to fluorescent reporters, defined progenitor phenotypes may now be isolated by fluorescence-activated cell sorting. Together, these findings give hope that structural brain repair through induced neurogenesis and neurogenic implants will soon be a clinical reality.  相似文献   

2.
Neurons and glia are generated throughout adulthood from proliferating cells in two regions of the rat brain, the subventricular zone (SVZ) and the hippocampus. This study shows that exogenous basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) have differential and site-specific effects on progenitor cells in vivo. Both growth factors expanded the SVZ progenitor population after 2 weeks of intracerebroventricular administration, but only FGF-2 induced an increase in the number of newborn cells, most prominently neurons, in the olfactory bulb, the normal destination for neuronal progenitors migrating from the SVZ. EGF, on the other hand, reduced the total number of newborn neurons reaching the olfactory bulb and substantially enhanced the generation of astrocytes in the olfactory bulb. Moreover, EGF increased the number of newborn cells in the striatum either by migration of SVZ cells or by stimulation of local progenitor cells. No evidence of neuronal differentiation of newborn striatal cells was found by three-dimensional confocal analysis, although many of these newborn cells were associated closely with striatal neurons. The proliferation of hippocampal progenitors was not affected by either growth factor. However, EGF increased the number of newborn glia and reduced the number of newborn neurons, similar to the effects seen in the olfactory bulb. These findings may be useful for elucidating the in vivo role of growth factors in neurogenesis in the adult CNS and may aid development of neuronal replacement strategies after brain damage.  相似文献   

3.
We have previously demonstrated that the most rostral part of the subventricular zone (SVZ) is a source of neuronal progenitor cells whose progeny are destined to become interneurons of the olfactory bulb. To determine whether the number of newly generated neurons in the adult olfactory bulb could be increased by the administration of an exogenous factor, brain-derived neurotrophic factor (BDNF) was infused for 12 days into the right lateral ventricle of adult rat brains. The production of new cells was monitored by either the intraventricular infusion or intraperitoneal injection of the cell proliferation marker BrdU. In both experimental paradigms we observed significantly more BrdU-labeled cells in the olfactory bulbs on the BDNF-infused side than in the olfactory bulb of PBS-infused animals. Analysis of the BDNF-infused brains of animals injected intraperitoneally with BrdU demonstrated a 100% increase in the number of BrdU-labeled cells in the bulb, the preponderance ( approximately 90%) of which were double-labeled with a neuron-specific antibody. These results demonstrate that the generation and/or survival of new neurons in the adult brain can be increased substantially by an exogenous factor. Furthermore, the SVZ, and in particular the rostral part, may constitute a reserve pool of progenitor cells available for neuronal replacement in the diseased or damaged brain.  相似文献   

4.
Death-associated protein kinase (DAP kinase) has been recently identified as a novel Ca2+/calmodulin-dependent protein kinase and as a potential mediator of gamma interferon-induced cell death of Hela cells, which has cytological characteristics of the programmed cell death. In order to elucidate its functional roles in the rat brain where the programmed cell death is an essential mechanism in the organization of postmitotic neurons during development, we cloned a rat homologue of the human DAP kinase from the rat embryonic brain cDNA library. The deduced amino acid sequence was highly conserved between the two species (93.6%). By in situ hybridization histochemistry, the expression of DAP kinase mRNA was observed in the mantle and ventricular zones of the entire neuraxis on embryonic day 15. However, the overall expression in the brain decreased markedly after birth and the expression was maintained at substantial levels in several restricted mature neuronal populations, such as olfactory bulb, hippocampal formation and cerebellar Purkinje and granule cells. Its wide expression during development and its maintained expression in the restricted mature neuronal population suggest that DAP kinase might be involved in some neuronal functions beyond simply executing the developmental neuronal cell death.  相似文献   

5.
In situ hybridization has demonstrated mRNA for olfactory receptors (OR) in the axon terminals of olfactory receptor neurons. Neurons that express the same OR appear to send their axons to two stereotyped glomeruli in the olfactory bulb (OB). Based on these observations, we tested the feasibility of using RT-PCR to isolate and sequence OR mRNA from small samples of the rat OB glomerular layer. Biomagnetic mRNA isolation followed by RT-PCR yielded partial sequences for 21 novel members of the OR family. The results suggest that the topography of OR mRNA can be mapped across the OB, to study synaptic specificity and odor representation in the olfactory system.  相似文献   

6.
The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain: (i) a ubiquitous genetic marker, (ii) a neuron-specific transgene, and (iii) a lipophilic-dye were used to follow the fate of postnatal day 5-10 SVZ cells grafted into embryonic mouse brain ventricles at day 15 of gestation. Graft-derived cells were found at multiple levels of the neuraxis, including septum, thalamus, hypothalamus, and in large numbers in the midbrain inferior colliculus. We observed no integration into the cortex. Neuronal differentiation of graft derived cells was demonstrated by double-staining with neuron-specific beta-tubulin antibodies, expression of the neuron-specific transgene, and the dendritic arbors revealed by the lipophilic dye. We conclude that postnatal SVZ cells can migrate through and differentiate into neurons within multiple embryonic brain regions other than the olfactory bulb.  相似文献   

7.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer.  相似文献   

8.
The mRNA expression of presenilin-1 (PS1) and beta-amyloid precursor protein (betaAPP) was investigated in the embryonic day 20 rat olfactory bulb, nasal cavity, and inner ear using in situ hybridization histochemistry. In the olfactory bulb, PS1 mRNA was strongly expressed in both olfactory bulb neuroepithelium and the differentiating olfactory bulb. In contrast, betaAPP mRNA was preferentially expressed in differentiating fields. In the nasal cavity, PS1 mRNA was strongly expressed throughout the olfactory epithelium, while betaAPP mRNA expression was concentrated in the middle part of the epithelium. In the membrane labyrinth of the inner ear, although PS1 mRNA was evenly distributed in both sensory epithelium and supporting cells, betaAPP mRNA was exclusively expressed in the sensory epithelium. These data suggest that PS1 is expressed earlier than betaAPP, and that PS1 and betaAPP co-operatively play pivotal roles in the development of the olfactory and vestibulocochlear systems.  相似文献   

9.
The subventricular zone of the adult mammalian forebrain contains progenitor cells that, by migrating along a restricted pathway called the 'rostral migratory stream' (RMS), add new neurons to the olfactory bulb throughout life. To determine the influence of the olfactory bulb on the development of these progenitor cells, we performed lesions that interrupt this pathway and separate the olfactory bulb from the rest of the forebrain. By labelling cells born at several survival times after the lesions with the thymidine analogue bromodeoxyuridine (BrdU), we found that disconnection from the bulb influences the rate of BrdU incorporation by the progenitor cells. The number of labelled cells in lesioned mice was almost half that found in control mice. In the disconnected migratory pathway, the number of neurons expressing calretinin was increased indicating that neuronal differentiation was enhanced: newly born neurons occurred within and around the RMS, most of them expressed calretinin and left the pathway starting about 2 weeks after the lesion. Thereafter, these neurons preserving their phenotype, spread for long distances, and accumulated ectopically in dorsal regions of the anterior olfactory nucleus and the frontal cortex. Finally, transplantation of adult subventricular cells into the lesioned pathway showed that the lesion neither prevents neuronal migration nor alters its direction. Thus, although the olfactory bulb appears to regulate the pace of the developmental processes, its disconnection does not prevent the proliferation, migration and phenotypic acquisition of newly generated bulbar interneurons that, since they cannot reach their terminal domains, populate some precise regions of the lesioned adult forebrain.  相似文献   

10.
EAAC1 is a neuronal and epithelial high affinity glutamate transporter previously cloned from rabbit intestine. Here we report the isolation of EAAC 1 from rat brain* and its expression in the central nervous system based on in situ hybridization. Strong signals were detected in brain, spinal cord and retina. Expression of EAAC1 was particularly strong in pyramidal cells of the cerebral cortex, pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, various thalamic nuclei and cells of certain retinal layers. EAAC1 was also expressed in non-glutamatergic neurons such as GABAergic cerebellar Purkinje cells and alpha-motor neurons of the spinal cord. We propose that EAAC1 is not only involved in the sequestration of glutamate at glutamatergic synapses and in protecting neurons from glutamate excitotoxicity, but also in the cellular metabolism involving glutamate.  相似文献   

11.
Unilateral naris closure in young rodents leads to striking alterations in the development of the ipsilateral olfactory system. One of the most pronounced effects is a 25% reduction in the size of the experimental olfactory bulb, a change that stems in part from decreased cell survival. Since naris occlusion in rodents alters the system more during development than in adulthood, we investigated the consequences of olfactory deprivation in a species that is born in a very immature state, Monodelphis domestica. In this pouchless marsupial, offspring are born after a short 14-day gestation. In the present study, the thymidine analogue bromodeoxyuridine was used to examine early postnatal neurogenesis in the olfactory bulb. Unlike rats and mice, neurogenesis of the main output neurons (the mitral cells) continues into postnatal life. Unilateral naris closure was begun on postnatal day 4 (P4) or P5 in Monodelphis and continued for 30 or 60 days. Laminar volume measurements revealed a significant reduction in the size of the experimental bulb following 60, but not 30, days of early olfactory deprivation. Mitral cell number estimates indicated a significant reduction after both 30 and 60 days of naris closure. The immaturity of Monodelphis offspring may render the population of mitral cells susceptible to the effects of olfactory deprivation. These findings suggest that afferent activity plays a role in the survival of all bulb neurons, irrespective of cell class.  相似文献   

12.
13.
The kinesin-related motor protein CHO1/MKLP1 was initially thought to be expressed only in mitotic cells, where it presumably transports oppositely oriented microtubules relative to one another in the spindle mid-zone. We have recently shown that CHO1/MKLP1 is also expressed in cultured neuronal cells, where it is enriched in developing dendrites [Sharp et al. (1997a) J. Cell Biol., 138, 833-843]. The putative function of CHO1/MKLP1 in these postmitotic cells is to intercalate minus-end-distal microtubules among oppositely oriented microtubules within developing dendrites, thereby establishing their non-uniform microtubule polarity pattern. Here we used in situ hybridization to determine whether CHO1/MKLP1 is expressed in a variety of rodent neurons both in vivo and in vitro. These analyses revealed that CHO1/MKLP1 is expressed within various neuronal populations of the brain including those in the cerebral cortex, hippocampus, olfactory bulb and cerebellum. The messenger ribonucleic acid (mRNA) levels are high within these neurons well after the completion of their terminal mitotic division and throughout the development of their dendrites. After this, the levels decrease and are relatively low within the adult brain. Parallel analyses on developing hippocampal neurons in culture indicate that the levels of expression increase dramatically just prior to dendritic development, and then decrease somewhat after the dendrites have differentiated. Dorsal root ganglion neurons, which generate axons but not dendrites, express significantly lower levels of mRNA for CHO1/MKLP1 than hippocampal or sympathetic neurons. These results are consistent with the proposed role of CHO1/MKLP1 in establishing the dendritic microtubule array.  相似文献   

14.
The present study provides an experimental model of the apoptotic death of pyramidal neurons in rat olfactory cortex after total bulbectomy. Terminal transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP)-biotin nick end labeling (TUNEL), DNA electrophoresis, and neuronal ultrastructure were used to provide evidence of apoptosis; neurons in olfactory cortex were counted by stereology. Maximal TUNEL staining occurred in the piriform cortex between 18 and 26 hr postbulbectomy. Within the survival times used in the present study (up to 48 hr postlesion), cell death was observed exclusively in the piriform cortex; there was no evidence of cell death in any other areas connected with the olfactory bulb. Neurons undergoing apoptosis were pyramidal cells receiving inputs from, but not projecting to, the olfactory bulb. The apical dendrites of these neurons were contacted by large numbers of degenerating axonal terminals. Gel electrophoresis of DNA purified from lesioned olfactory cortex showed a ladder pattern of fragmentation. Inflammatory cells or phagocytes were absent in the environment of degenerating neurons in the early stages of the apoptotic process. The present model suggests that deafferentation injury in sensory systems can cause apoptosis. In addition, olfactory bulbectomy can be used for investigating molecular mechanisms that underlie apoptosis in mature mammalian cortical neurons and for evaluating strategies to prevent the degeneration of cortical neurons.  相似文献   

15.
The anterior portion of the neonatal telencephalic subventricular zone (SVZa) contains proliferating cells that generate an immense number of neurons destined to become the granule and periglomerular cells of the olfactory bulb. In contrast to other immature neurons in the central nervous system, cells arising in the SVZa maintain the ability to divide as they traverse the rostral migratory stream to their final destinations despite expressing an antigenic marker of differentiated neurons (Menezes et al. [1995] Molec. Cell. Neurosci. 6:496-508). Because of their considerable proliferative capacities and unusual mitotic behavior, we decided to determine the cell cycle length of proliferating cells within the SVZa and within the migratory pathway used by SVZa-derived cells. Following the methodology of Nowakowski et al. [1989](J. Neurocytol. 18:311-318), postnatal day 2 rat pups were exposed to 5'-bromo-2'deoxyuridine (BrdU) for increasing periods of time before perfusion. By plotting the percentage of nuclei undergoing DNA synthesis in the SVZa at each time versus the BrdU labeling interval, we determined that approximately 15% of the SVZa population is actively dividing and that these cells have a cycle length of approximately 14 hr, significantly less than the 18.6 hr determined to be the cycle length of dividing cells in more posterior, glia-generating regions of the subventricular zone (Thomaidou et al. [1997] J. Neurosci. 17:1075-1085). The cycle length of cells dividing in the mid portion of the rostral migratory stream, however, is considerably longer: 17.3 hr. This may reflect the need for these cells to coordinate the processes of migration and division. Our studies also suggest that there may be regional differences in the types of descendants produced by the proliferating cells. Retroviral lineage tracing studies showed that those cells that divide within the rostral migratory stream, like proliferating cells within the SVZa, make cells destined for the olfactory bulb. Unlike the progenitors that divide within the SVZa and generate more granule cells than periglomerular cells, the proliferating cells within the migratory pathway generate more periglomerular cells than granule cells. Collectively the proliferating cells of the SVZa and migratory pathway produce a large number of olfactory bulb interneurons. Our work suggests that this may be achieved in part by the relatively rapid divisions of progenitor cells within the SVZa and in part by the ongoing division of migrating cells en route to the olfactory bulb.  相似文献   

16.
The vertebrate olfactory system has long been an attractive model for studying neuronal regeneration and adaptive plasticity due to the continuous neurogenesis and synaptic remodelling throughout adult life in primary and secondary olfactory centres, its precisely ordered synaptic network and accessibility for manipulation. After homotopic transplantation of fetal olfactory bulbs in bulbectomized neonatal rodents, newly regenerated olfactory neurons form glomeruli within the graft, and the efferent mitral/tufted cells of the transplant innervate the host brain, terminating in higher olfactory centres. However, the synaptic connections of the transplanted relay neurons within the graft and/or host's olfactory centres could not be characterized mainly because of lack of suitable cell-specific markers for these neurons. In this study, we have used olfactory bulbs from transgenic fetuses, in which the majority of the mitral/tufted cells express the bacterial enzyme beta-galactosidase, for homotopic olfactory bulb transplantation following complete unilateral bulbectomy. In the transplants, the cell bodies and terminals of the donor mitral/tufted cells were identified by beta-galactosidase histochemistry and immunocytochemistry at both light and electron microscope levels. We demonstrate that transplanted relay neurons re-establish specific synaptic connections with host neurons of the periphery, source of the primary signal and central nervous system, thereby providing the basis for a functional recovery in the lesioned olfactory system.  相似文献   

17.
Neuronal restricted precursors (NRPs) () can generate multiple neurotransmitter phenotypes during maturation in culture. Undifferentiated E-NCAM+ (embryonic neural cell adhesion molecule) immunoreactive NRPs are mitotically active and electrically immature, and they express only a subset of neuronal markers. Fully mature cells are postmitotic, process-bearing cells that are neurofilament-M and synaptophysin immunoreactive, and they synthesize and respond to different subsets of neurotransmitter molecules. Mature neurons that synthesize and respond to glycine, glutamate, GABA, dopamine, and acetylcholine can be identified by immunocytochemistry, RT-PCR, and calcium imaging in mass cultures. Individual NRPs also generate heterogeneous progeny as assessed by neurotransmitter response and synthesis, demonstrating the multipotent nature of the precursor cells. Differentiation can be modulated by sonic hedgehog (Shh) and bone morphogenetic protein (BMP)-2/4 molecules. Shh acts as a mitogen and inhibits differentiation (including cholinergic differentiation). BMP-2 and BMP-4, in contrast, inhibit cell division and promote differentiation (including cholinergic differentiation). Thus, a single neuronal precursor cell can differentiate into multiple classes of neurons, and this differentiation can be modulated by environmental signals.  相似文献   

18.
Serotonin has been shown to affect the development of the mammalian nervous system. The serotonin transporter is a major factor in regulating extracellular serotonin levels. Using in situ hybridization histochemistry the rat serotonin transporter messenger RNA was localized during embryogenesis, the first four weeks postnatally and adulthood. Three general classes of serotonin transporter messenger RNA expression patterns were observed: (i) early detection with continued expression through adult age, (ii) transient expression colocalized with vesicular monoamine transporter 2 messenger RNA but with no detectable tryptophan hydroxylase immunoreactivity, and (iii) transient expression in the apparent absence of both vesicular monoamine transporter 2 messenger RNA and tryptophan hydroxylase immunoreactivity. For example, hybridization for serotonin transporter messenger RNA was strong in serotonin cell body-containing areas beginning early in gestation, and remained intense through adulthood. Immunoreactivity for tryptophan hydroxylase, the rate-limiting enzyme in serotonin synthesis, was completely overlapping with the presence of serotonin transporter messenger RNA in raphe nuclei postnatally. Sensory relay systems including the ventrobasal nucleus (somatosensory), lateral and medial geniculate nuclei (visual and auditory, respectively) as well as trigeminal, cochlear and solitary nuclei were representative of the second class of observations. In general, the limbic system expressed serotonin transporter messenger RNA in the third pattern with various limbic structures differing in the timing of expression. Septum, olfactory areas and the developing hippocampus contained serotonin transporter messenger RNA early in the developing brain. Other regions such as cingulate and frontopolar cortex exhibited hybridization peri- and postnatally, respectively. Several hypothalamic nuclei and pituitary transiently expressed serotonin transporter messenger RNA either postnatally or perinatally, respectively. If the observed patterns correlate with functional protein expression, distinct classes of serotonin transporter messenger RNA expression may reflect different functional roles for the serotonin transporter and serotonin, itself. Since the serotonin transporter is a target for a number of addictive substances including cocaine and amphetamine derivatives as well as antidepressants, transient expression of the serotonin transporter might suggest a window of vulnerability of associated cells to fetal drug exposure. Re-uptake, storage and re-release from non-serotonergic neurons might serve as a feedback mechanism from target neurons to serotonergic neurons. Alternatively, the transient expression of serotonin transporter messenger RNA may reflect critical periods important for tight regulation of extracellular serotonin in several brain regions, and may indicate previously unappreciated roles for serotonin as a developmental cue.  相似文献   

19.
In situ hybridization of mouse embryo sections demonstrated expression of mRNAs encoding two polypeptide inhibitors (p18INK4c and p19INK4d) of cyclin D-dependent kinase (CDK) 4 and CDK6 in the central nervous system. No expression of two other INK4 members, p16INK4a and p15INK4b, was observed. The p19INK4d and p18INK4c proteins formed complexes with either CDK4 or CDK6 in a temporal pattern consistent with the results of in situ hybridization. Expression of INK4c was observed at embryonic day 13.5 in neuroepithelial zones of the developing brain, being restricted to dividing neuroblasts but absent from differentiating postmitotic neurons. In the neocortex, p18INK4c was expressed precisely at those developmental stages when neuroblasts switch from a symmetric to an asymmetric pattern of cell division with concomitant increases in their G1 interval. INK4d RNA was detected from embryonic day 11.5 onward, at higher levels than INK4c and with a distinctly different spatial and temporal pattern. Marked INK4d expression was seen in dorsal root ganglia, spinal cord, and focally throughout the brain, but primarily in postmitotic neurons. Neural expression of INK4d continued postnatally into adulthood in postmitotic cells of the dentate gyrus, the pyramidal layer of the hippocampus, and in discrete regions of the cerebral cortex, cerebellum, thalamus, and brainstem. Downregulation of p19INK4d in the dentate gyrus after kainic acid-induced seizures indicated that its expression could also be modified in nondividing cells by excitotoxic stress. Therefore, p19INK4d may contribute to maintaining the quiescent state, acting as a buffer to prevent reactivation of cyclin D-dependent kinases in terminally differentiated cells.  相似文献   

20.
Neurogenesis in the adult olfactory epithelium is highly regulated in vivo. Little is known of the molecular signals which control this process, although contact with the olfactory bulb or with astrocytes has been implicated. Explants of mouse olfactory epithelium were grown in the presence or absence of several peptide growth factors. Basic fibroblast growth factor (FGF2) stimulated differentiation of sensory neurons in adult and embryonic olfactory epithelium. Other growth factors tested were ineffective. FGF2-stimulated neurons were born in vitro and expressed neurofilament, neural cell adhesion molecule, and beta-tubulin. The cells also expressed olfactory marker protein, a marker for mature olfactory sensory neurons in vivo. These bipolar neurons did not express glial fibrillary acidic protein or low-affinity nerve growth factor receptor. These results indicate that neither astrocytes nor olfactory bulb are necessary for differentiation of olfactory sensory neurons in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号