共查询到20条相似文献,搜索用时 15 毫秒
1.
The ball impact test was developed as a package-level measure for the board-level drop reliability of solder joints in the
sense that it leads to fracturing of solder joints around intermetallics, similar to that from a board-level drop test. We
investigated numerically the effects of constitutive relationships of solder alloy on transient structural responses of a
single package-level solder joint subjected to ball impact testing. This study focused on the characteristics of the ascending
part of the impact force profile. According to the piecewise linear stress-strain curve obtained for the Sn-4Ag-0.5Cu solder
alloy, parametric studies were performed by varying either segmental moduli or characteristic stresses of the curve at fixed
ratios, with regard to the lack of available rate-dependent material properties of solder alloys. 相似文献
2.
3.
Jenn-Ming Song Yao-Ren Liu Yi-Shao Lai Ying-Ta Chiu Ning-Cheng Lee 《Microelectronics Reliability》2012,52(1):180-189
In this work, we present ball impact test (BIT) responses and fracture modes obtained at an impact velocity of 0.8 m/s on SAC (Sn–Ag–Cu) package-level solder joints with a trace amount of Mn or RE (rare earth) additions, which were bonded with substrates of OSP Cu and electroplated Ni/Au surface finishes respectively. With respect to the as-mounted conditions, the Ni/Au joints possessed better impact fracture resistance than those with Cu substrate. Subsequent to aging at 150 °C for 800 h, multi-layered intermetallic compounds emerged at the interface of the Ni/Au joints and gave rise to degradation of the BIT properties. This can be prevented by RE doping, which is able to inhibit the growth of interfacial IMCs during aging. As for aged Cu joints, the Mn-doped samples showed the best performance in impact force and toughness. This was related to the hardened Sn matrix, and most importantly, a greater Cu3Sn/Cu6Sn5 thickness ratio at the interface. Compared to Cu6Sn5, Cu3Sn with a similar hardness but greater elastic modulus possessed better plastic ability, which was beneficial to the reliability of solder joints suffering high strain rate deformation if no excess Kirkendall voids formed. 相似文献
4.
Jing-en Luan Tong Yan Tee Eric Pek Chwee Teck Lim Zhaowei Zhong 《Microelectronics Reliability》2007,47(2-3):450-460
Board level solder joint reliability during drop test is a great concern to semiconductor and electronic product manufacturers. In this paper, the comprehensive dynamic responses of printed circuit boards (PCBs) and solder joints, e.g., acceleration, strains, and resistance, are measured and analyzed in detail with a multi-channel real-time electrical monitoring system. Control and monitoring of dynamic responses are very important to ensure consistent test results and understand the mechanical behaviors, as they are closely related to the solder joint failure mechanism. The effects of test variables, such as drop height, number of PCB mounting screws, tightness of screws, and number of felt layer, are studied by comparing and analyzing the dynamic responses. A good repeatability of testing can only be achieved when careful attentions are paid on these factors. The relationships among drop height, peak acceleration, pulse duration, and impact energy are unique for a drop tester, and therefore, it should be characterized prior to the reliability tests. The studies also help to determine the requirements of new impact pulse quickly. The bending mode shapes and frequencies of PCB are extracted from dynamic strains and images token by high-speed camera. A real-time dynamic resistance monitoring method is developed to study the solder joint reliability. The solder joint failure process, i.e. crack initiation, propagation, and opening, is well understood from the behavior of dynamic resistance. It is found experimentally that the mechanical shock causes multiple PCB bending or vibration which induces the solder joint crack failure. Cyclic changes of dynamic resistance indicate that the solder joint crack opens and closes when PCB bends up and down. 相似文献
5.
Li Huakang Lv Kehong Qiu Jing Chen Bailiang 《International Journal of Electronics》2018,105(6):1011-1024
The test path of solder joint intermittent connection faults under direct-current stimulus is examined in this paper. According to the physical structure of the circuit, a network model is established first. A network node is utilised to represent the test node. The path edge refers to the number of intermittent connection faults in the path. Then, the selection criteria of the test path based on the node degree index are proposed and the solder joint intermittent connection faults are covered using fewer test paths. Finally, three circuits are selected to verify the method. To test if the intermittent fault is covered by the test paths, the intermittent fault is simulated by a switch. The results show that the proposed method can detect the solder joint intermittent connection fault using fewer test paths. Additionally, the number of detection steps is greatly reduced without compromising fault coverage. 相似文献
6.
Board-level solder joint reliability is very critical for handheld electronic products during drop impact. In this study, board-level drop test and finite element method (FEM) are adopted to investigate failure modes and failure mechanisms of lead-free solder joint under drop impact. In order to make all ball grid array (BGA) packages on the same test board subject to the uniform stress and strain level during drop impact, a test board in round shape is designed to conduct drop tests. During these drop tests, the round printed circuit board assembly (PCBA) is suffered from a specified half-sine acceleration pulse. The dynamic responses of the PCBA under drop impact loading are measured by strain gauges and accelerometers. Locations of the failed solder joints and failure modes are examined by the dye penetration test and cross section test. While in simulation, FEM in ABAQUS software is used to study transient dynamic responses. The peeling stress which is considered as the dominant factor affecting the solder joint reliability is used to identify location of the failed solder joints. Simulation results show very good correlation with experiment measurement in terms of acceleration response and strain histories in actual drop test. Solder joint failure mechanisms are analyzed based on observation of cross section of packages and dye and pry as well. Crack occurred at intermetallic composite (IMC) interface on the package side with some brittle features. The position of maximum peeling stress in finite element analysis (FEA) coincides with the crack position in the cross section of a failed package, which validated our FEA. The analysis approach combining experiment with simulation is helpful to understand and improve solder joint reliability. 相似文献
7.
This study aims to investigate the shear and tensile impact strength of solder ball attachments. Tests were conducted on Ni-doped and non-Ni-doped Sn-0.7wt.% Cu, Sn-37wt.% Pb and Sn-3.0wt.% Ag-0.7wt.% Cu solder ball grid arrays (BGAs) placed on Cu substrates, which were as-reflowed and aged, over a wide range of displacement rates from 10 to 4000 mm/s in shear and from 1 to 400 mm/s in tensile tests. Ni additions to the Sn-0.7wt.% Cu solders has slowed the growth of the interface intermetallic compounds (IMCs) and made the IMC layer morphology smooth. As-reflowed Ni-doped Sn-0.7wt.% Cu BGA joints show superior properties at high speed shear and tensile impacts compared to the non-Ni-doped Sn-0.7wt.% Cu and Sn-3.0wt.% Ag-0.7wt.% Cu BGAs. Sn-3.0wt.% Ag-0.7wt.% Cu BGAs exhibit the least resistance in both shear and tensile tests among the four compositions of solders, which may result from the cracks in the IMC layers introduced during the reflow processes. 相似文献
8.
It has been well established that lead-free solder underperforms conventional leaded solder in reliability under dynamic impact. Common failures observed on ball-grid-array (BGA) solder balls on chip under board level impact include bulk solder ductile failure, intermetallic (IMC) layer crack and pad-lift. In this work, a finite element modeling approach was proposed to model bulk solder ductile failure and intermetallic layer crack. The use of beam elements and connector elements to represent the bulk solders and board/component side intermetallic layers, respectively, offers the advantage of simplicity over the use of continuum elements and cohesive elements for solder joints. This approach enables the modeling of assembly level impact with significantly less computational resources. The model was verified by comparing its prediction of BGA solder reliability against actual test results in a dynamic four-point bend test. The physical tests consist of ball impact at varying heights on a board with a mounted chip, and the subsequent analysis of the failure modes of the BGA solder joints. Simulation results were in good agreement with test results. The study shows that it is feasible to model BGA solder joint ductile failure and intermetallic layer crack under impact with simple elements with reasonable accuracy. 相似文献
9.
针对低Ag无铅焊膏的市场需求,研究开发了一种适用于99.0Sn0.3Ag0.7Cu低Ag无铅焊膏用松香型无卤素助焊剂(WTO—LF3000),配制了相应的无铅焊膏(WTO—LF3000—SAC0307),并对其板级封装工艺适应性及焊点可靠性进行了考察,用测试后样品的电气可靠性作为接头可靠性评价条件。结果表明:所开发的低Ag无铅焊膏熔点和润湿性符合产品实际要求。配制的焊膏印刷质量良好,焊点切片观察其孔隙率<25%,满足行业标准IPC—A—610D之要求。样品分别经跌落、震动和温度循环试验后,无焊点脱落等现象,电气功能正常。 相似文献
10.
11.
Jong-Woong Kim Dae-Gon Kim Won Sik Hong Seung-Boo Jung 《Journal of Electronic Materials》2005,34(12):1550-1557
The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip
package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between
the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints
after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed
to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package
side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses
were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation
of the plastic work and viscoplastic shear strains. 相似文献
12.
Tomoya Daito Hiroshi Nishikawa Tadashi Takemoto Takashi Matsunami 《Microelectronics Reliability》2013
Solder joints are required to have high impact strength for use in portable electronic products. To make solder joints with high impact strength, qualitative evaluation methods of impact strength are required. Ball impact tests have been widely adopted in evaluating the impact strength of solder joints because of their easy implementation. Impact load curves obtained from ball impact tests are used as an evaluation indicator of impact strength of solder joint. However, a relation between fracture behavior and impact load curve has not yet been clarified, and an explanation of the impact load curve has not yet been provided in detail. In addition to this, detailed study about the relation between IMC layer thickness and impact strength has not been performed, although the IMC layer thickness formed at the interface would significantly affect the impact strength of the solder joint. This study aimed to explain the impact load curve in the ball impact test and to reveal the effect of the IMC layer thickness on the impact strength of the solder joint. Sn–3.0Ag–0.5Cu solder was reflowed on an electroless Ni–P plated Cu substrate (Ni–P), and a ball impact test was then carried out to evaluate the impact strength. This study found that the ball impact test is effective to evaluate the interfacial strength of solder joints. In the impact load curve, it is estimated that the solder bump keeps deforming until the interfacial crack initiates (maximum load), and the interfacial crack initiates after the maximum load and propagates along the interface between the solder and Ni–P. The suitable evaluation of impact strength became possible by measuring the correspondence relation between the deformation distance of the solder bump after fracture and the energy until maximum load and the relation between the area fraction of the residual solder on the fractured pad and the energy after maximum load. And, it is proved that the impact strength decreased with increasing aging time because the growth of the IMC layer remarkably degraded the interfacial strength of the solder joint. 相似文献
13.
Solder joint failure is a serious reliability concern in flip-chip and ball grid array packages of integrated-circuit chips. In current industrial practice, the solder joints take on the shape of a spherical segment. Mathematical calculations and finite element modeling have shown that hourglass-shaped solder joints would have the lowest plastic strain and stress during a temperature cycle, thus the longest lifetime. In an effort to improve solder joint reliability, we have developed a stacked solder bumping technique for fabricating triple-stacked hourglass-shaped solder joints. This solder bumping technology can easily control the solder joint shape and height. The structure of triple-stacked solder joints consists of an inner cap, middle ball and outer cap. The triple-stacked solder joints are expected to have greater compliance than conventional solder joints and are able to relax the stresses caused by the coefficient of thermal expansion mismatching between the silicon chips and substrates since it has a greater height. Furthermore, the hourglass-shaped solder joints are to have a much lower stress/strain concentration at the interface between the solder joint and the silicon die as well as at the interface between the solder joint and substrate than barrel-shaped solder joints, especially around the corners of the interfaces. In this paper, the solder bumping process is designed and joint reliability is evaluated. Mechanical tests have been carried out to characterize the adhesion strength of the solder joints. The interfaces of the solder joints are investigated by scanning electron microscopy and energy dispersive X-ray analysis. Temperature cycling results show that the triple-stacked hourglass-shaped solder joints are more reliable than the traditional spherical-shaped solder joints. 相似文献
14.
《Microelectronics Reliability》2014,54(9-10):1753-1757
Thermo Mechanical Cycle Lifetime (TMCL) test is a widely used test methodology for evaluating the reliability of solder joints in the microelectronics industry. The commonly used measurement techniques to monitor solder joint failures during the TMCL test are either event detector or data logger. In this study, TMCL test has been carried out on the same devices in parallel with both measurement techniques. The pros and cons of both techniques are compared. It is observed that the solder joint reliability results on the investigated samples by both techniques are comparable. The event detector can catch short intermittent events, while the data logger is able to capture the details of the solder joint degradation process. In applications for which performance is dependent on the transmission of signals with a frequency of several hundred megahertz or more, the event detector technique shall be used. In such cases the data logger technique may overestimate product lifetime. On the other hand, for some applications where the performance is less susceptible to intermittent solder joint interconnect interruption but more to the increase of the solder joint resistance, the data logger shall be used. In such cases the event detector technique may underestimate product lifetime. In conclusion depending on the end application of the device, the most suitable technique can be selected. 相似文献
15.
Tz-Cheng Chiu Jyun-Ji Lin Hung-Chun Yang Vikas Gupta 《Microelectronics Reliability》2010,50(12):2037-2050
The ever increasing power density in high performance microelectronic devices for applications such as large business computing and telecommunication infrastructure has led to several new reliability challenges for solder interconnects. One of them is the creep collapse and bridging of ball grid array (BGA) solder joints under heatsink compressive loads. For characterizing the solder joint response to compressive load and model the corresponding reliability failure, the compressive creep behavior of Sn3.8Ag0.7Cu solder was first investigated. A viscoplastic constitutive model developed from the creep characterization was then incorporated into numerical finite element (FE) analysis to predict solder joint creep collapse and bridging under heatsink compressive load. The numerical analysis results were validated by experimental studies of solder joint collapse under compressive load and isothermal aging condition. A simplified power-law formula is also provided for modeling the creep collapse of Sn3.8Ag0.7Cu solder joint. The model may be applied for predicting solder joint compressive reliability under a prescribed heatsink compression, or to determine the maximum allowable heatsink load for a given life expectancy. 相似文献
16.
Correlation studies for component level ball impact shear test and board level drop test 总被引:1,自引:1,他引:0
E.H. Wong C.S. Selvanayagam W.D. van Driel X.J. Zhao L.C. Tan P.L. Eu C.-L. Yeh 《Microelectronics Reliability》2008,48(7):1069-1078
This paper presents a comprehensive study of the resistance of solder joints to failure when subjected to strain rates that simulate the conditions of drop-impact on a portable electronic product. Two test methods are used in this study: the board level drop/shock test (BLDT) and the component level ball impact shear test (BIST). The performance of (i) 12 material combinations consisting of six solder alloys and two pad finishes; and (ii) 11 manufacturing variations covering three vendors, two finishes, three immersion gold thicknesses and three thermal aged conditions, were investigated using these two test methods, and analysis of correlations between the methods was performed. Quantitative correlation and sensitivity coefficients for the failure modes and the measured characteristic parameters - number of drops to failure for BLDT and peak load, total fracture energy, and energy-to-peak load for BIST - were evaluated. The lack of universal correlations between the two test methods has ruled out the use of BIST for evaluating solder joint materials, but BIST is recommended as a test method for quality assurance in view of the strong correlation between the measured parameters and the failure mode. The total fracture energy parameter is preferred over the peak load and energy-to-peak load due to its higher sensitivity and reduced susceptibility to measurement error. 相似文献
17.
李志民 《电子产品可靠性与环境试验》2005,23(2):31-34
主要介绍了Sn—Pb合金焊接点发生失效的各个失效阶段的各种表现形式,探讨发生失效的各种原因.如热应力与热冲击、金属的溶解、基板和元件过热、超声清洗的损害,以及如何在工艺上进行改进以改善焊点的可靠性,使焊点有良好的可靠性、不易损坏,能够承受变化的负载等,从而提高产品的质量。 相似文献
18.
Seong-jae Jeon Hak-Joo Lee Sang-Su Ha Seung-Boo Jung 《Microelectronic Engineering》2008,85(10):1967-1970
This study utilized a high speed lap-shear test to evaluate the mechanical behavior of Sn-37Pb/Cu under bump metallization (UBM) solder joints under high speed loading and hence the drop reliability. The samples were aged for 120 h at different temperatures (150 °С, 180 °С) and then tested at different displacement rates in the range of 0.01 mm/s to 500 mm/s to examine the effects of aging on the drop reliability. The combination of the stress-strain graphs captured from the shear tests and the fracture morphology analysis discloses that the aging at high temperatures has influenced critically the deformation behavior of the solder joints and the effects appears more significant at high strain rates. This study demonstrates a unique capability of a drop reliability evaluation method that utilizes a high speed lap-shear test. 相似文献
19.
Chang-Lin Yeh Yi-Shao Lai Hsiao-Chuan Chang Tsan-Hsien Chen 《Microelectronics Reliability》2007,47(7):1127-1134
Package-level ball impact test and board-level drop test are performed and correlated using a specific chip-scale package with solder joints of different Sn–Ag–Cu solder compositions. A positive correlation is found between characteristics of the impact force profile and reliability from the drop test, which provides a supporting basis for the package-level ball impact test to serve as a substitute of the timely and costly board-level drop test. 相似文献
20.
A new reflow parameter, heating factor (Qη), which is defined as the integral of the measured temperature over the dwell time above liquidus, has been proposed in this report. It can suitably represent the combined effect of both temperature and time in usual reflow process. Relationship between reliability of the micro-ball grid array (micro-BGA) package and heating factor has been discussed . The fatigue failure of micro-BGA solder joints reflowed with different heating factor in nitrogen ambient has been investigated using the bending cycle test. The fatigue lifetime of the micro-BGA assemblies firstly increases and then decreases with increasing heating factor. The greatest lifetime happens at Qη near 500 s °C. The optimal Qη range is between 300 and 750 s °C. In this range, the lifetime of the micro-BGA assemblies is greater than 4500 cycles. SEM micrographs reveal that cracks always initiate at the point of the acute angle where the solder joint joins the PCB pad. 相似文献