首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyporus umbellatus is one of the most widely used and precious medicinal fungi and the underground sclerotia are known to be with great medicinal value. However, the molecular mechanisms involved in sclerotial development are poorly understood. In the present study, we constructed a forward suppression subtractive hybridization (SSH) cDNA library of Polyporus umbellatus to identify genes expressing differently between mycelium and sclerotia. In this library, a total of 1202 clones were sequenced, assembled into 222 contigs and 524 singletons which were further searched against the NCBI nonredundant (NR) protein database (E-value cutoff, 10−5). Based on sequence similarity with known proteins, 378 sequences between mycelium and sclerotial were identified and classified into different functional categories through Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs). We have finally identified a majority of differentially expressed genes (constituting 5.6% of the present library) between the two different periods. An expression level of 32 selected expressed sequence tags (ESTs) generated from the above SSH cDNA library was studied through RT-PCR. This study provides the first global overview of genes putatively involved in Polyporus umbellatus sclerotial development and provides a preliminary basis for further functional research in terms of regulated gene expression in sclerotial production.  相似文献   

2.
Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.  相似文献   

3.
Two morphologically different Aspergillus parasiticus strains, one producing aflatoxins, abundant conidia but few sclerotia (BN9) and the other producing O-methyl-sterimatocystin (OMST), copious sclerotia but a low number of conidia (RH), were used to assess the role of crzA which encodes a putative calcium-signaling pathway regulatory protein. Under standard culture conditions, BN9ΔcrzA mutants conidiated normally but decreased slightly in radial growth, regardless of illumination conditions. RHΔcrzA mutants produced only conidia under light and showed decreased conidiation and delayed sclerotial formation in the dark. Regulation of conidiation of both A. parasiticus strains by light was independent of crzA. Increased concentrations of lithium, sodium, and potassium impaired conidiation and sclerotial formation of the RHΔcrzA mutants but they did not affect conidiation of the BN9ΔcrzA mutants. Vegetative growth and asexual development of both ΔcrzA mutants were hypersensitive to increased calcium concentrations. Calcium supplementation (10 mM) resulted in 3-fold and 2-fold decreases in the relative expression of the endoplasmic reticulum calcium ATPase 2 gene in the BN9 and RH parental strains, respectively, but changes in both ΔcrzA mutants were less significant. Compared to the parental strains, the ΔcrzA mutants barely produced aflatoxins or OMST after the calcium supplementation. The relative expression levels of aflatoxin biosynthesis genes, nor1, ver1, and omtA, in both ΔcrzA mutants were decreased significantly, but the decreases in the parental strains were at much lower extents. CrzA is required for growth and development and for aflatoxin biosynthesis under calcium stress conditions.  相似文献   

4.
The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe2+–Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O2•−) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)—N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H2O2)–Fe2+ system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na2S2O3 titration method was used to measure the scavenging activities of APS on H2O2. APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O2•−, •OH and H2O2 significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health.  相似文献   

5.
Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.  相似文献   

6.
Plants produce linalool to respond to biotic stress, but the linalool-induced early signal remains unclear. In wild-type Arabidopsis, plant resistance to diamondback moth (Plutella xylostella) increased more strongly in a linalool-treated group than in an untreated control group. H2O2 and Ca2+, two important early signals that participated in biotic stress, burst after being treated with linalool in Arabidopsis mesophyll cells. Linalool treatment increased H2O2 and intracellular calcium concentrations in mesophyll cells, observed using a confocal microscope with laser scanning, and H2O2 signaling functions upstream of Ca2+ signaling by using inhibitors and mutants. Ca2+ efflux was detected using non-invasive micro-test technology (NMT), and Ca2+ efflux was also inhibited by NADPH oxidase inhibitor DPI (diphenyleneiodonium chloride) and in cells of the NADPH oxidase mutant rbohd. To restore intracellular calcium levels, Ca2+-ATPase was activated, and calmodulin 3 (CAM3) participated in Ca2+-ATPase activation. This result is consistent with the interaction between CAM7 and Ca2+-ATPase isoform 8 (ACA8). In addition, a yeast two-hybrid assay, firefly luciferase complementation imaging assay, and an in vitro pulldown assay showed that CAM3 interacts with the N-terminus of ACA8, and qRT-PCR showed that some JA-related genes and defense genes expressions were enhanced when treated with linalool in Arabidopsis leaves. This study reveals that linalool enhances H2O2 and intracellular calcium concentrations in Arabidopsis mesophyll cells; CAM3-ACA8 reduces intracellular calcium concentrations, allowing cells to resume their resting state. Additionally, JA-related genes and defense genes’ expression may enhance plants’ defense when treated with linalool.  相似文献   

7.
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.  相似文献   

8.
A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.  相似文献   

9.
The electrochemical behavior of the three new vanadium oxides MyH1−yV3VO8 (M=Li, Na, K; y=0.6-0.9) towards lithium insertion was studied. For each compound, the main insertion phenomena, and the lithium amount which can be inserted, were determined from galvanostatic studies performed at different rates. In order to better explain the differences between the compounds, the galvanostatic intermittent titration technique was used and chronoamperometry experiments were performed. Cyclability studies have shown that the performances of M0.6H0.4V3O8 (M=Li, K) are not better than those of H2V3O8. On the contrary, Na0.9H0.1V3O8 presents very interesting lithium insertion properties, with a specific capacity of 215 mAh g−1 in the 1.5-4 V voltage range at C/10, and a capacity loss at the 40th cycle remaining smaller than 2.5%. Na0.9H0.1V3O8 is therefore a good candidate as positive electrode material for rechargeable lithium batteries.  相似文献   

10.
Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.  相似文献   

11.
Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.  相似文献   

12.
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies.  相似文献   

13.
Hao Jin  Xiaodan Sun  Weizheng Weng  Huilin Wan 《Fuel》2010,89(8):1953-1960
The effect of H4SiW12O40 loading on the catalytic performance of the reduced Ni-H4SiW12O40/SiO2 catalysts for hydrocracking of n-decane with or without the presence of thiophene and pyridine is studied. The catalysts were characterized by BET, XRD, Raman, XPS, H2-TPR, H2-TPD, NH3-TPD and FT-IR of pyridine adsorption. It was found that addition of H4SiW12O40 to the system increases the catalytic activity and the promoting effect is a function of the H4SiW12O40 loading. The best result was obtained on 5%Ni-50%H4SiW12O40/SiO2 catalyst which shows the highest activity for hydrocracking of n-decane and excellent tolerance to the sulfur and nitrogen compounds in the feedstock. The results showed that a suitable amount of H4SiW12O40 loading on the 5%Ni/SiO2 catalyst increases the amount of both hydrogen adsorbed and Brønsted acid and Lewis acid sites on the catalyst. The high catalytic performance of the catalyst can be related to the nature of H4SiW12O40 and the proper balance between metal and acid functions.  相似文献   

14.
According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.  相似文献   

15.
Two new quinochalcone C-glycosides, named hydroxysafflor yellow B (1) and hydroxysafflor yellow C (2), along with two known quinochalcone C-glycosides, safflomin C (3) and saffloquinoside C (4), and one known flavanone, (2R)-4'',5-dihydroxyl-6,7-di-O-β-d-glucopyranosyl flavanone (5), were isolated from the florets of Carthamus tinctorius. Their structures were determined by extensive spectroscopic (UV, IR, HR-ESI-MS, 1D and 2D NMR) analyses. In addition, these quinochalcone C-glycosides together with hydroxysafflor yellow A and anhydrosafflor yellow B were evaluated for their anti-oxidative effects against H2O2-induced cytotoxicity in cultured H9c2 cells. Among them, compound 2 exhibited significant anti-oxidative effects.  相似文献   

16.
Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs) play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS) method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA)-induced and hydrogen peroxide (H2O2)-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.  相似文献   

17.
18.
Amorphous Ru1−yCryO2/TiO2 nanotube composites were synthesized by loading different amount of Ru1−yCryO2 on TiO2 nanotubes via a reduction reaction of K2Cr2O7 with RuCl3·nH2O at pH 8, followed by drying in air at 150 °C. Cyclic voltammetry and galvanostatic charge/discharge tests were applied to investigate the performance of the Ru1−yCryO2/TiO2 nanotube composite electrodes. For comparison, the performance of amorphous Ru1−yCryO2 was also studied. The results demonstrated that the three dimensional nanotube network of TiO2 offered a solid support structure for active materials Ru1−yCryO2, allowed the active material to be readily available for electrochemical reactions, and increased the utilization of active materials. A maximum specific capacitance 1272.5 F/g was obtained with the proper amount of Ru1−yCryO2 loaded on the TiO2 nanotubes.  相似文献   

19.
LiNi1−yCoyO2 (y=0.1, 0.3 and 0.5) were synthesized by solid state reaction method at 800 °C and 850 °C from LiOH·H2O, NiO and Co3O4 as starting materials. The electrochemical properties of the synthesized LiNi1−yCoyO2 were investigated. As the content of Co decreases, particle size decreases rapidly and particle size distribution gets more homogeneous. When the particle size is compared at the same composition, the particles synthesized at 850 °C are larger than those synthesized at 800 °C. LiNi0.7Co0.3O2 synthesized at 850 °C has the largest intercalated and deintercalated Li quantity Δx among LiNi1−yCoyO2 (y=0.1, 0.3 and 0.5). LiNi0.7Co0.3O2 synthesized at 850 °C has the largest first discharge capacity (178 mAh/g), followed by LiNi0.7Co0.3O2 (162 mAh/g) synthesized at 800 °C. LiNi0.7Co0.3O2 synthesized at 800 °C has discharge capacities of 162 and 125 mAh/g at n=1 and n=5, respectively.  相似文献   

20.
Ni/Al2O3 with the doping of CeO2 was found to have useful activity to reform ethane and propane with steam under Solid Oxide Fuel Cells (SOFCs) conditions, 700-900 °C. CeO2-doped Ni/Al2O3 with 14% ceria doping content showed the best reforming activity among those with the ceria content between 0 and 20%. The amount of carbon formation decreased with increasing Ce content. However, Ni was easily oxidized when more than 16% of ceria was doped. Compared to conventional Ni/Al2O3, 14%CeO2-doped Ni/Al2O3 provides significantly higher reforming reactivity and resistance toward carbon deposition. These enhancements are mainly due to the influence of the redox properties of doped ceria. Regarding the temperature programmed reduction experiments (TPR-1), the redox properties and the oxygen storage capacity (OSC) for the catalysts increased with increasing Ce doping content. In addition, it was also proven in the present work that the redox of these catalysts are reversible, according to the temperature programmed oxidation (TPO) and the second time temperature programmed reduction (TPR-2) results.During the reforming process, in addition to the reactions on Ni surface, the gas-solid reactions between the gaseous components presented in the system (C2H6, C3H8, C2H4, CH4, CO2, CO, H2O, and H2) and the lattice oxygen (Ox) on ceria surface also take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen (Ox) on ceria surface (CnHm+OxnCO+m/2(H2)+Oxn) can prevent the formation of carbon species on Ni surface from hydrocarbons decomposition reaction (CnHmnC+m/2H2). Moreover, the formation of carbon via Boudard reaction (2CO⇔CO2+C) is also reduced by the gas-solid reaction of carbon monoxide (produced from steam reforming) with the lattice oxygen (CO+Ox⇔CO2+Ox−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号