首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
In response to cardiac ischemia/reperfusion, proteolysis mediated by extracellular matrix metalloproteinase inducer (EMMPRIN) and its secreted ligand cyclophilin-A (CyPA) significantly contributes to cardiac injury and necrosis. Here, we aimed to investigate if, in addition to the effect on the funny current (I(f)), Ivabradine may also play a role against cardiac necrosis by reducing EMMPRIN/CyPA-mediated cardiac inflammation. In a porcine model of cardiac ischemia/reperfusion (IR), we found that administration of 0.3 mg/kg Ivabradine significantly improved cardiac function and reduced cardiac necrosis by day 7 after IR, detecting a significant increase in cardiac CyPA in the necrotic compared to the risk areas, which was inversely correlated with the levels of circulating CyPA detected in plasma samples from the same subjects. In testing whether Ivabradine may regulate the levels of CyPA, no changes in tissue CyPA were found in healthy pigs treated with 0.3 mg/kg Ivabradine, but interestingly, when analyzing the complex EMMPRIN/CyPA, rather high glycosylated EMMPRIN, which is required for EMMPRIN-mediated matrix metalloproteinase (MMP) activation and increased CyPA bonding to low-glycosylated forms of EMMPRIN were detected by day 7 after IR in pigs treated with Ivabradine. To study the mechanism by which Ivabradine may prevent secretion of CyPA, we first found that Ivabradine was time-dependent in inhibiting co-localization of CyPA with the granule exocytosis marker vesicle-associated membrane protein 1 (VAMP1). However, Ivabradine had no effect on mRNA expression nor in the proteasome and lysosome degradation of CyPA. In conclusion, our results point toward CyPA, its ligand EMMPRIN, and the complex CyPA/EMMPRIN as important targets of Ivabradine in cardiac protection against IR.  相似文献   

2.
Myocardial infarction is the most common cause of death worldwide. An understanding of the alterations in protein pathways is needed in order to develop strategies that minimize myocardial damage. To identify the protein signature of cardiac ischemia/reperfusion (I/R) injury in rats, we combined, for the first time, protein matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and label-free proteomics on the same tissue section placed on a conductive slide. Wistar rats were subjected to I/R surgery and sacrificed after 24 h. Protein MALDI-MSI data revealed ischemia specific regions, and distinct profiles for the infarct core and border. Firstly, the infarct core, compared to histologically unaffected tissue, showed a significant downregulation of cardiac biomarkers, while an upregulation was seen for coagulation and immune response proteins. Interestingly, within the infarct tissue, alterations in the cytoskeleton reorganization and inflammation were found. This work demonstrates that a single tissue section can be used for protein-based spatial-omics, combining MALDI-MSI and label-free proteomics. Our workflow offers a new methodology to investigate the mechanisms of cardiac I/R injury at the protein level for new strategies to minimize damage after MI.  相似文献   

3.
T-LAK-cell-originated protein kinase (TOPK) is a PDZ-binding kinase (PBK) that was recently identified as a novel member of the mitogen-activated protein kinase (MAPK) family. It has been shown to play an important role in many cellular functions. However, its role in cardiac function remains unclear. Thus, we have herein explored the biological function of TOPK in myocardial ischemia/reperfusion (I/R) and oxidative stress injury in H9C2 cardiomyocytes. I/R and ischemic preconditioning (IPC) were induced in rats by 3-hour reperfusion after 30-min occlusion of the left anterior descending coronary artery and by 3 cycles of 5-min I/R. Hydrogen peroxide (H2O2) was used to induce oxidative stress in H9C2 cardiomyocytes. TOPK expression was analyzed by western blotting, RT-PCR, immunohistochemical staining, and immunofluorescence imaging studies. The effects of TOPK gene overexpression and its inhibition via its inhibitor HI-TOPK-032 on cell viability and Bcl-2, Bax, ERK1/2, and p-ERK1/2 protein expression were analyzed by MTS assay and western blotting, respectively. The results showed that IPC alleviated myocardial I/R injury and induced TOPK activation. Furthermore, H2O2 induced TOPK phosphorylation in a time-dependent manner. Interestingly, TOPK inhibition aggravated the H2O2-induced oxidative stress injury in myocardiocytes, whereas overexpression relieved it. In addition, the ERK pathway was positively regulated by TOPK signaling. In conclusion, our results indicate that TOPK might mediate a novel survival signal in myocardial I/R, and that its effect on anti-oxidative stress involves the ERK signaling pathway.  相似文献   

4.
The programmed cell death protein 1 (PD1) immune checkpoint prevents inflammatory tissue damage by inhibiting immune reactions. Understanding the relevance of cardiac PD1 signaling may provide new insights into the inflammatory events under baseline conditions and disease. Here, we demonstrate distinct immunological changes upon PD1 deficiency in healthy hearts and during reperfused acute myocardial infarction (repAMI). In PD1-deficient mice, upregulated inflammatory cytokines were identified under baseline conditions including cardiac interleukins and extracellular signal-related kinase 1/2 (ERK1/2). A murine in vivo repAMI model to determine inflammatory changes in the early phase showed downregulation of the ligand PDL1, paralleled by an endothelial injury, indicated by loss of the CD31 signal. Immunofluorescence imaging showed decreased PDL1 expression specifically in the infarct zone, highlighting an involvement in PDL1 in myocardial injury response. Pharmacological depletion of PD1 prior to repAMI did not alter the area of infarction but led to increased numbers of CD8+ T cells in treated mice. We conclude that PD1/PDL1 signaling plays a significant role in healthy hearts and repAMI, emphasizing the relevance of adaptive immunity during myocardial injury. The findings highlight the risk for adverse outcomes from acute myocardial infarction in the growing group of patients receiving immune checkpoint inhibitor therapy.  相似文献   

5.
Ischemia/reperfusion injury (IRI) in the kidney is the most common cause of acute renal dysfunction through different cell damage mechanisms. This study aimed to investigate, on molecular basics for the first time, the effect of pantoprazole on renal IRI in rats. Different biochemical parameters and oxidative stress markers were assessed. ELISA was used to estimate proinflammatory cytokines. qRT-PCR and western blot were used to investigate the gene and protein expression. Renal histopathological examination was also performed. IRI resulted in tissue damage, elevation of serum levels of creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, IL-1β, up-regulation of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it up-regulated the expression of the Bax gene and down-regulated the expression of the Bcl-2 gene. Treatment of the injured rats with pantoprazole, either single dose or multiple doses, significantly alleviated IRI-induced biochemical and histopathological changes, attenuated the levels of proinflammatory cytokines, down-regulated the expression of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins, and the Bax gene, and up-regulated Bcl-2 gene expression. Moreover, treatment with pantoprazole multiple doses has an ameliorative effect that is greater than pantoprazole single-dose. In conclusion, pantoprazole diminished renal IRI via suppression of apoptosis, attenuation of the pro-inflammatory cytokines’ levels, and inhibition of the intracellular signaling pathway MAPK (ERK1/2, JNK, p38)–NF-κB.  相似文献   

6.
Cerebrovascular disease is one of the leading causes of disability and death worldwide, and seeking a potential treatment is essential. Trilinolein (TriL) is a natural triacylglycerol presented in several plants. The effects of TriL on cerebrovascular diseases such as cerebral ischemia and carotid stenosis have never been studied. Accordingly, we investigated the protection of TriL on cerebral ischemia/reperfusion (I/R) and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. The cerebral infarction area, the intima to media area (I/M ratio), and proliferating cell nuclear antigen (PCNA)-staining of the carotid artery were measured. Platelet-derived growth factor (PDGF)-BB-stimulated A7r5 cell migration and potential mechanisms of TriL were investigated by wound healing, transwell, and Western blotting. TriL (50, 100, and 200 mg/kg, p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive apoptosis; intimal hyperplasia; and PCNA-positive cells in rodents. TriL (5, 10, and 20 µM) significantly inhibited PDGF-BB-stimulated A7r5 cell migration and reduced matrix metalloproteinase-2 (MMP-2), Ras, MEK, and p-ERK protein levels in PDGF-BB-stimulated A7r5 cells. TriL is protective in models of I/R-induced brain injury, carotid artery ligation-induced intimal hyperplasia, and VSMC migration both in vivo and in vitro. TriL could be potentially efficacious in preventing cerebral ischemia and cerebrovascular diseases.  相似文献   

7.
Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor β/δ (PPARβ/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARβ/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARβ/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARβ/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARβ/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARβ/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARβ/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号