首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel and magnesium ferrite magnetic nanoparticles were fabricated and applied as efficient and reusable catalysts in the solvent-free conversion of various epoxides to the corresponding thiiranes with ammonium thiocyanate under oil bath (60°C) conditions. NiFe2O4 and MgFe2O4 nanoparticles can catalyze the reactions at short times in high to excellent yields. The catalysts can also be recovered easily using an external magnetic field and be reused four times without any significant loss of activity.  相似文献   

2.
The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4.  相似文献   

3.
Fe3O4 magnetic nanoparticles were prepared by the aqueous co-precipitation of FeCl3-6H2O and FeCl2-4H2O with addition of ammonium hydroxide. The conditions for the preparation of Fe3O4 magnetic nanoparticles were optimized, and Fe3O4 magnetic nanoparticles obtained were characterized systematically by means of transmission electron microscope (TEM), dynamic laser scattering analyzer (DLS) and X-ray diffraction (XRD). The results revealed that the magnetic nanoparticles were cubic shaped and dispersive, with narrow size distribution and average diameter of 11.4 nm. It was found that the homogeneous variation of pH value in the solution via the control on the dropping rate of aqueous ammonia played a critical role in size distribution. The magnetic response of the product in the magnetic field was also analyzed and evaluated carefully. A 32.6 mT magnetic field which is produced by four ferromagnets was found to be sufficient to excite the dipole moments of 0.05 g Fe3O4 powder 2 cm far away from the ferromagnets. In conclusion, the Fe3O4 magnetic nanoparticles with excellent properties were competent for the magnetic carders of targeted-drug in future application.  相似文献   

4.
Nanocrystalline NiFe2O4 was synthesized by sol-gel route using various surfactants such as PVP, EDTA and CTAB. The effect of different surfactants on structure, magnetic and dielectric properties of the NiFe2O4 nanoparticles (NPs) were investigated. The prepared samples were inspected by XRD, HRSEM, and TEM. Powder XRD studies confirmed the realization of single crystalline cubic structure of the NiFe2O4 nanoferrites. The addition of surfactants significantly modified the crystallite size of the final products. Dielectric features of NiFe2O4 NPs were slightly modified with different surfactants. The magnetic results revealed an enormous decrease in coercivity and a moderate reduction in the saturation magnetization when EDTA and CTAB were used as compared to PVP. The present results declare that the adding of various surfactants in the sample preparation controls the size of NiFe2O4 NPs and thus noticeably influences the magnetic parameters.  相似文献   

5.
A straightforward strategy is designed for the fabrication of a magnetically separable NiFe2O4‐graphene photocatalyst with different graphene content. It is very interesting that the combination of NiFe2O4 nanoparticles with graphene sheets results in a dramatic conversion of the inert NiFe2O4 into a highly active catalyst for the degradation of methylene blue (MB) under visible light irradiation. The significant enhancement in photoactivity under visible light irradiation can be ascribed to the reduction of GO, because the photogenerated electrons of NiFe2O4 can transfer easily from the conduction band to the reduced GO, effectively preventing a direct recombination of electrons and holes. The results of the kinetic study indicated that the rate‐determining stage is the adsorption process of MB molecules. NiFe2O4 nanoparticles themselves have a strong magnetic property, which can be used for magnetic separation in a suspension system, and, therefore, the introduction of additional magnetic supports is no longer necessary. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

6.
This work reports an original method for synthesis of well-crystallized manganese ferrite (MnFe2O4) nanoparticles via a high energy wet milling technique under atmospheric conditions, starting from metallic Mn and Fe powders in the presence of distilled water. The effects of milling conditions on the formation and magnetic properties of MnFe2O4 nanoparticles were investigated in detail. Fully stoichiometric MnFe2O4 nanocrystals with an average crystallite size of 14.5 nm were produced after 24 h of milling. As-synthesized MnFe2O4 nanocrystals were found to show soft magnetic behavior at room temperature with saturation magnetization of 53 emu/g. Due to reduced thermal effects, the saturation magnetization increased to 68 emu/g at 5 K. Results show that this method is simple and efficient for the mass production of MnFe2O4 nanoparticles.  相似文献   

7.
We report a facile non-templated hydrothermal synthesis method for the production of nickel ferrite (NiFe2O4)/carbon nanotube nanocomposite comprised of oxidized multi-walled carbon nanotube (o-MWCNT) uniformly coated with nanoparticles of NiFe2O4 (1–5 nm). The carboxylate groups of the o-MWCNT coordinate the nanoparticles strongly at its surface, and the size of the NiFe2O4 particles can be controlled by the subtle variation of reaction time and the quantity of o-MWCNT used. We believe that this method can be extended to allow the uniform coating of different spinel-type materials onto o-MWCNT and other nanocarbon materials.  相似文献   

8.
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.  相似文献   

9.
The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran–Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9’s first antibody (CA 19-9 Ab1) on magnetic nanoparticles (dextran-Fe3O4). Secondly, the signal probes (CA 19-9 Ab2/CdTe-G), which can emit an ECL signal, were formed by attaching the secondary CA 19-9 antibody (CA 19-9 Ab2) to the surface of the CdTe-G. Thirdly, the above two probes were used for conjugating with a serial of CA 19-9 concentrations. Graphene can immobilize dozens of CdTe QDs on their surface, which can emit stronger ECL intensity than CdTe QDs. Based on the amplified signal, ultrasensitive antigen detection can be realized. Under the optimal conditions, the ECL signal depended linearly on the logarithm of CA 19-9 concentration from 0.005 to 100 pg/mL, and the detection limit was 0.002 pg/mL. Finally, five samples of human serum were tested, and the results were compared with a time-resolved fluorescence assay (TRFA). The novel immunoassay provides a stable, specific and highly sensitive immunoassay protocol for tumor marker detection at very low levels, which can be applied in early diagnosis of tumor.  相似文献   

10.
《Ceramics International》2020,46(10):16548-16555
In this article, NiFe2O4 nanoparticles (NPs) were prepared by co-precipitation method with subsequent thermal annealing leading to obtainment NPs with average sizes of 78 nm. Structure and magnetic analysis were performed by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry techniques. Stability of NiFe2O4 NPs was evaluated in PBS solution during 20 days. The toxicity of prepared NPs was evaluated in vitro using different cancer cell lines: HeLa (cervical cancer cell), PC-3 (prostate cancer cell). Fibroblasts like cells of L929 obtained from subcutaneous adipose tissue of mouse were used as normal cells. Results indicate successful synthesis of NiFe2O4 NPs that exhibit low cytotoxicity in concentration range from 1 to 100 μg/ml. Presented physical and biological results indicate the possibility of application investigated magnetic nanoparticles in hyperthermia, targeted drug delivery, magnetic resonance imaging or cell separation.  相似文献   

11.
In this paper, the core–shell structured NiFe2O4@TiO2 nanoparticles and nanochains as photocatalysts were successfully prepared through hydrothermal and hydrolysis method. The as-prepared core–shell structure was composed of a magnetic NiFe2O4 core and photocatalytic titanium oxide coating shell. SEM and TEM images characterized the morphology of NiFe2O4@TiO2 nanoparticles. Moreover, the results of XRD patterns proved that the TiO2 coating shell consisted of anatase. The VSM measurements showed that the saturation magnetization values of NiFe2O4 and NiFe2O4@TiO2 nanoparticles was 65 and 53 emu/g, respectively. The photocatalyst of NiFe2O4@TiO2 nanoparticles exhibited the outstanding recyclable performance for RhB. And, the photo_degradation ration of maintained 69 % after the photocatalyst experienced ten photocatalysis experiments, which is better than that of Fe3O4@TiO2 photocatalysts.  相似文献   

12.
In this study, bifunctional Fe3O4@ZrO2 magnetic core–shell nanoparticles (NPs), synthesized by a simple and effective sonochemical approach, were attached to the surface of a magnetic glassy carbon electrode (MGCE) and successfully applied to the immobilization/adsorption of myoglobin (Mb) for constructing a novel biosensor platform. With the advantages of the magnetism and the excellent biocompatibility of the Fe3O4@ZrO2 NPs, Mb could be easily immobilized on the surface of the electrode in the present of external magnetic field and well retained its bioactivity, hence dramatically facilitated direct electron transfer of Mb was demonstrated. The proposed Mb/Fe3O4@ZrO2 biofilm electrode exhibited excellent electrocatalytic behaviors towards the reduction of H2O2 with a linear range from 0.64 μM to 148 μM. This presented system avoids the complex synthesis for protecting Fe3O4 NPs, supplies a simple, effective and inexpensive way to immobilize protein, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.  相似文献   

13.

Abstract  

NiFe2O4 nanoparticles stabilized by porous silica shells (NiFe2O4@SiO2) were prepared using a one-pot synthesis and characterized for their physical and chemical stability in severe environments, representative of those encountered in industrial catalytic reactors. The SiO2 shell is porous, allowing transport of gases to and from the metal core. The shell also stabilizes NiFe2O4 at the nanoparticle surface: NiFe2O4@SiO2 annealed at temperatures through 973 K displays evidence of surface Ni, as verified by H2 TPD analyses. At 1,173 K, hematite forms at the surface of the metallic cores of the NiFe2O4@SiO2 nanoparticles and surface Ni is no longer observed. Without the silica shell, however, even mild reduction (at 773 K) can draw Fe to the surface and eliminate surface Ni sites.  相似文献   

14.
《Ceramics International》2016,42(7):7987-7992
Narrow size distribution nickel ferrite nanoparticles with average particle size of around 6 nm has been synthesized via rapid thermo-decomposition method in the presence of oleylamine in solution which acted as neutralizing, stabilizing and reducing agent OAm coated NiFe2O4 NPs. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectra (FT-IR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), Vibrating Simple Magnetometer (VSM) and also Mössbauer Spectroscopy were used for structural, morphological, spectroscopic and magnetic characterization of the product. The XRD analysis revealed the formation of single phase nickel ferrite with Fd-3m space group. Both FT-IR and TGA analyses confirmed the formation of desired nanocomposite. FT-IR analysis also showed characteristic IR absorption bands of the spinel nickel ferrite phase and oleylamine. TEM and SEM analysis showed that product have almost spherical structural morphology. TEM images showed that NiFe2O4 nanoparticles have narrow size distribution and Energy Dispersive X-ray (EDX) analysis confirmed the presence of metal ions in the required stoichiometric ratio. Superparamagnetic property of the product was confirmed by VSM. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values have been determined. The Mössbauer spectra for OAm coated NiFe2O4 NPs. is consisting of one paramagnetic central doublets and one magnetic Zeeman sextet. Finally, the synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles.  相似文献   

15.
We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A ‘destabilization state’ with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, ‘long-lived stable clusters state’ (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can ‘paste’ these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.  相似文献   

16.
β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.  相似文献   

17.
NiFe2O4 nanoparticles were synthesized via solid‐state reaction. The effects of the reaction parameters, namely dispersant content, calcination temperature and annealing time on particle size and morphology were investigated. Magnetic properties of NiFe2O4 nanoparticles were tested. The formation mechanism of nanoparticles by solid‐state reaction was also discussed. The results indicated that the synthesized nickel ferrite particles were of nanometer size with different morphologies by slight variation of the reaction conditions. The solid‐state reaction technique is a simple, convenient, inexpensive and effective preparation method of NiFe2O4 in high yield.  相似文献   

18.
The impact of MnO2 as an additive on the properties of NiFe2O4-based cermets prepared by the two-steps sintering method has been investigated. The new material was characterized in terms of the crystal structure, microstructure, linear shrinkage, relative density and porosity. Moreover, the bending strength of NiFe2O4-based cermets was measured. Differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD) shows that the addition of MnO2 has no obvious influence on the crystal structure of the cermets. Scanning electron microscope (SEM) studies reveals that the grain sizes of cermets decreases slightly with doped MnO2. The results show that the linear shrinkage, relative density and bending strength increase at first and then decrease slightly. A high-density (99.56%) and high-strength (84.28 MPa) NiFe2O4-based cermets has been obtained by adding 0.50 wt% MnO2 into the matrix.  相似文献   

19.
Nickel ferrite nanoparticles were successfully synthesized via a co-precipitation approach, and then polyrhodanine/nickel ferrite nanocomposite (PRh/NiFe2O4) as an antimicrobial agent was fabricated by a chemical polymerization method. The synthesized NiFe2O4 nanoparticles and PRh/NiFe2O4 nanocomposite were chemically, magnetically and morphologically characterized using FTIR, FESEM, DLS, VSM and XRD techniques. The FESEM analysis showed that the NiFe2O4 nanoparticles had a polygon structure with an average diameter of 50 nm. According to disc diffusion as well as MIC and MBC tests, the PRh/NiFe2O4 nanocomposite had better antibacterial effects on killing Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli in comparison with the NiFe2O4 nanoparticles.  相似文献   

20.
Spinels were synthesised and investigated as electro-catalyst for the electrochemical reduction of oxygen and nitric oxide using cyclic voltammetry and cone shaped electrodes. The following four spinels were investigated; CoFe2O4, NiFe2O4, CuFe2O4 and Co3O4. The composition CuFe2O4 revealed the largest difference in activity between reduction of oxygen and the reduction of nitric oxide, the activity being highest for the reduction of nitric oxide. The material is probably not stable when polarised cathodically. However it seems that the electrode material can be regenerated upon oxidation. NiFe2O4 is also more active for the reduction of nitric oxide than for the reduction of oxygen, whereas the cobalt containing spinels have a higher activity for the reduction of oxygen than for the reduction of nitric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号