首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
目的 在复杂背景下,传统轮廓跟踪方法只考虑了目标的整体特征或显著性特征,没有充分利用目标的局部特征信息,尤其是目标发生遮挡时,容易发生跟踪漂移,甚至丢失目标.针对上述问题,提出一种基于局部模型匹配的几何活动轮廓(LM-GAC)跟踪算法.方法 首先,利用超像素技术将图像中的颜色特征相似的像素点归为一类,形成由一些像素点组成的超像素,从而把目标分割成若干个超像素块,再结合EMD(earth mover's distance)相似性度量构建局部特征模型.然后,进行局部模型匹配,引入噪声模型来估算局部模型参数θ,这样可以增强特征模型的自适应性,提高局部模型匹配的准确性.最后,结合粒子滤波的水平集分割方法提取目标轮廓,实现目标轮廓精确跟踪.结果 本文算法与多种目标轮廓跟踪算法进行对比,在部分遮挡、目标形变、光照变化、复杂背景等条件的基准图像序列均具有较高的跟踪成功率,平均成功率为79.6%.结论 实验结果表明,根据不同的图像序列,可以自适应地实时改变噪声模型参数和粒子的权重,使得本文算法具有较高的准确性和鲁棒性.特别是在复杂的背景下,算法能较准确地进行目标轮廓跟踪.  相似文献   

2.
目的 基于目标模型匹配方法被广泛用于运动物体的检测与跟踪。针对传统模型匹配跟踪方法易受局部遮挡、复杂背景等因素影响的问题,提出一种前景划分下的双向寻优BOTFP (Bidirectional optimization tracking method under foreground partition)跟踪方法。方法 首先,在首帧中人工圈定目标区域,提取目标区域的颜色、纹理特征,建立判别外观模型。然后,利用双向最优相似匹配方法进行目标检测,计算测试图像中的局部特征块与建立的外观模型之间的相似性,从而完成模型匹配过程。为了避免复杂背景和相似物干扰,提出一种前景划分方法约束匹配过程,得到更准确的匹配结果。最后,提出一种在线模型更新算法,引入了距离决策,判断是否发生误匹配,避免前景区域中相似物体的干扰,保证模型对目标的描述更加准确。结果 本文算法与多种优秀的跟踪方法相比,可以达到相同甚至更高的跟踪精度,在Girl、Deer、Football、Lemming、Woman、Bolt、David1、David2、Singer1以及Basketball视频序列下的平均中心误差分别为7.43、14.72、8.17、13.61、24.35、7.89、11.27、13.44、12.18、7.79,跟踪重叠率分别为0.69、0.58、0.71、0.85、0.58、0.78、0.75、0.60、0.74、0.69。与同类方法L1APG (L1 tracker using accelerated proximal gradient approach),TLD (tracking-learning-detection),LOT (local orderless tracker)比较,平均跟踪重叠率提升了20%左右。结论 实验结果表明,在前景区域中,利用目标的颜色特征和纹理特征进行双向最有相似匹配,使得本文算法在部分遮挡、目标形变、复杂背景、目标旋转等条件下具有跟踪准确、适应性强的特点。  相似文献   

3.
目的 基于水平集的轮廓提取方法被广泛用于运动物体的轮廓跟踪。针对传统方法易受局部遮挡、复杂背景等因素影响的问题,提出一种先验模型约束的抗干扰(AC-PMC)轮廓跟踪算法。方法 首先,选取图像序列的前5帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立目标的先验模型。然后,利用水平集分割方法提取目标轮廓,并提出决策判定算法,判断是否需要引入形状先验模型加以约束,避免遮挡、复杂背景等影响。最后,提出一种在线模型更新算法,在特征集中加入适当特征补偿,使得更新的目标模型更为准确。结果 本文算法与多种优秀的轮廓跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Fish、Face1、Face2、Shop、Train以及Lemming视频图像序列下的平均中心误差分别为3.46、7.16、3.82、13.42、14.72、12.47,算法的跟踪重叠率分别为0.92、0.74、0.85、0.77、0.73、0.82,算法的平均运行速度分别为4.27 帧/s、4.03 帧/s、3.11 帧/s、2.94 帧/s、2.16 帧/s、1.71 帧/s。结论 利用目标的先验模型约束以及提取轮廓过程中的决策判定,使本文算法在局部遮挡、目标形变、目标旋转、复杂背景等条件下具有跟踪准确、适应性强的特点。  相似文献   

4.
前景约束下的抗干扰匹配目标跟踪方法   总被引:1,自引:0,他引:1  
传统模型匹配跟踪方法没有充分考虑目标与所处图像的关系,尤其在复杂背景下,发生遮挡时易丢失目标.针对上述问题,提出一种前景约束下的抗干扰匹配(Anti-interference matching under foreground constraint,AMFC)目标跟踪方法.该方法首先选取图像帧序列前m帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立判别外观模型;然后,采用EM(Expectation maximization)模型建立约束性前景区域,通过基于LK(Lucas-Kanade)光流法框架下的模型匹配寻找最佳匹配块.为了避免前景区域中相似物体的干扰,提出一种抗干扰匹配的决策判定算法提高匹配的准确率;最后,为了对目标的描述更加准确,提出一种新的在线模型更新算法,当目标发生严重遮挡时,在特征集中加入适当特征补偿,使得更新的外观模型更为准确.实验结果表明,该算法克服了目标形变、目标旋转移动、光照变化、部分遮挡、复杂环境的影响,具有跟踪准确和适应性强的特点.  相似文献   

5.
目的 近年来,目标跟踪领域取得了很大进步,但是由于尺度变化,运动,形状畸变或者遮挡等造成的外观变化,仍然是目标跟踪中的一大挑战,因而有效的图像表达方法是提高目标跟踪鲁棒性的一个关键因素。方法 从中层视觉角度出发,首先对训练图像进行超像素分割,将得到特征向量集以及对应的置信值作为输入值,通过特征回归的方法建立目标跟踪中的判别外观模型,将跟踪图像的特征向量输入该模型,得到候选区域的置信值,从而高效地分离前景和背景,确定目标区域。结果 在公开数据集上进行跟踪实验。本文算法能较好地处理目标尺度变化、姿态变化、光照变化、形状畸变、遮挡等外观变化;和主流跟踪算法进行对比,本文算法在跟踪误差方面表现出色,在carScale、subway、tiger1视频中能取得最好结果,平均误差为12像素,3像素和21像素;和同类型的方法相比,本文算法在算法效率上表现出色,所有视频的跟踪效率均高于同类型算法,在carScale视频中的效率,是同类算法效率的32倍。结论 实验结果表明,本文目标跟踪算法具有高效性和鲁棒性,适用于目标发生外观变化时的目标跟踪问题。目前跟踪中只用了单一特征,未来考虑融合多特征来提升算法鲁棒性和准确度。  相似文献   

6.
针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高.  相似文献   

7.
目的 复杂环境下,运动目标在跟踪过程中受尺度变换以及遮挡因素的影响,跟踪准确率较低。针对这一问题,提出一种遮挡判别下的多尺度相关滤波跟踪方法。方法 首先选取第1帧图像的前景区域,训练目标的位置、尺度滤波器和GMS(grid-based motion statistics)检测器。然后,通过位置滤波器估计目标位置,尺度滤波器计算目标尺度,得到初选目标区域。最后,利用相关滤波响应情况对初选目标区域进行评估,通过相关滤波响应值的峰值和峰值波动情况判断是否满足遮挡和更新条件。若遮挡,启动检测器检测目标位置,检测到目标位置后,更新目标模型;若更新,则更新位置、尺度滤波器和GMS检测器,完成跟踪。结果 本文使用多尺度相关滤波方法作为算法的基本框架,对尺度变化目标跟踪具有较好的适应性。同时,利用目标模型更新机制和GMS检测器检索目标,有效地解决了遮挡情况下的目标丢失问题。在公开数据集上的测试结果表明,本文算法平均中心误差为5.58,平均跟踪准确率为94.2%,跟踪速度平均可达27.5 帧/s,与当前先进的跟踪算法相比,本文算法兼顾了跟踪速度和准确率,表现出更好的跟踪效果。结论 本文提出一种新的遮挡判别下的多尺度相关滤波跟踪算法。实验结果表明,本文算法在不同的尺度变换及遮挡条件下能够快速准确跟踪目标,具有较好的跟踪准确率和鲁棒性。  相似文献   

8.
目的 针对背景和摄像机同时运动情况下的运动目标提取与跟踪,提出一种基于稀疏光流的目标提取与跟踪新方法。方法 首先,利用金字塔LK光流法生成光流图像匹配相邻两幅图像的特征点,依据光流图像中的位移、方向等光流信息初步划分背景和前景目标的特征点;然后利用中心迭代法去除不属于目标运动区域的噪声特征点;最后,通过前N帧图像目标特征点的最大交集得到属于目标的稳定特征点并在后续帧中进行跟踪。对于后续跟踪图像中存在的遮挡问题,引入了一个基于特征点的遮挡系数,运用Kalman预估算法得到目标位置的预测,并且在目标重新出现时能够迅速定位目标。结果 与已有的光流匹配算法相比,本文算法的目标特征点误检率降低了10%左右,成功跟踪率达到97%;引入预估器使得本文算法对有遮挡运动目标也能够实现准确跟踪和定位。结论 本文算法对复杂动态背景下无遮挡和有遮挡的持续运动目标跟踪均具有准确识别定位性能,满足实时要求,适用于缓慢或者快速移动的运动场景目标提取和目标跟踪。  相似文献   

9.
目的 判别式目标跟踪算法在解决模型漂移问题时通常都是在预测结果的基础上构建更可靠的样本或采用更健壮的分类器,从而忽略了高效简洁的置信度判别环节。为此,提出高置信度互补学习的实时目标跟踪算法(HCCL-Staple)。方法 将置信度评估问题转化为子模型下独立进行的置信度计算与互补判别,对相关滤波模型计算输出的平均峰值相关能量(APCE),结合最大响应值进行可靠性判定,当二者均以一定比例大于历史均值时,判定为可靠并进行更新,将颜色概率模型的输出通过阈值处理转化为二值图像,并基于二值图像形态学提取像素级连通分量属性(PCCP),综合考虑连通分量数量、最大连通分量面积及矩形度进行可靠性判别,当置信度参数多数呈高置信度形态时,判定为可靠,进行更新;否则,判定为不可靠,降低该模型的融合权重并停止更新。结果 在数据集OTB-2015上的实验结果表明,HCCL-Staple算法与原算法相比,距离精度提高了3.2%,成功率提高了2.7%,跟踪速度为32.849帧/s,在颜色特征适应性较弱的场景和目标被遮挡的复杂场景中均能有效防止模型漂移,与当前各类主流的跟踪算法相比具有较好的跟踪效果。结论 两种子模型的置信度判别方法均能针对可能产生低置信度结果的敏感场景进行有效估计,且对输出形式相同的其他模型在置信度判别上具有一定的适用性。互补使用上述判别策略的HCCL-Staple算法能够有效防止模型漂移,保持高速的同时显著提升跟踪精度。  相似文献   

10.
目的 传统的视觉跟踪方法只考虑了目标本身的特征信息提取,忽略了目标周围稠密的上下文信息。一旦目标本身特征信息提取存在困难,很容易导致跟踪失败。为解决上述问题,提出一种时空上下文抗遮挡视觉跟踪算法(STC-PF)。方法 首先,利用目标与局部区域的时空关系学习时空上下文模型;然后,通过上下文先验模型和学习到的时空上下文模型计算置信图;最后,对时空上下文区域进行分块遮挡判别,若遮挡概率小于设定阈值,计算置信图所得最大概率位置即为目标位置;若遮挡概率大于设定阈值,则目标发生遮挡,通过子块匹配和粒子滤波估计目标位置以及运动轨迹,实现不同程度的抗遮挡跟踪。结果 对测试数据集中的图像序列进行实验,结果表明,STC-PF方法的跟踪成功率提高至80%以上;中心误差小于原算法;同时STC-PF算法在提高抗遮挡能力的前提下,运行速度与原算法相当,高于当前流行算法。结论 STC-PF算法能够适用于光照变化、目标旋转、遮挡等复杂情况下的视觉目标跟踪,具有一定的实时性和高效性,尤其是在目标发生遮挡情况下具有很好的抗遮挡能力和较快的运行速度。  相似文献   

11.
目的 图像协同分割技术是通过多幅参考图像以实现前景目标与背景区域的分离,并已被广泛应用于图像分类和目标识别等领域中。不过,现有多数的图像协同分割算法只适用于背景变化较大且前景几乎不变的环境。为此,提出一种新的无监督协同分割算法。方法 本文方法是无监督式的,在分级图像分割的基础上通过渐进式优化框架分别实现前景和背景模型的更新估计,同时结合图像内部和不同图像之间的分级区域相似度关联进一步增强上述模型估计的鲁棒性。该无监督的方法不需要进行预先样本学习,能够同时处理两幅或多幅图像且适用于同时存在多个前景目标的情况,并且能够较好地适应前景物体类的变化。结果 通过基于iCoseg和MSRC图像集的实验证明,该算法无需图像间具有显著的前景和背景差异这一约束,与现有的经典方法相比更适用于前景变化剧烈以及同时存在多个前景目标等更为一般化的图像场景中。结论 该方法通过对分级图像分割得到的超像素外观分布分别进行递归式估计来实现前景和背景的有效区分,并同时融合了图像内部以及不同图像区域之间的区域关联性来增加图像前景和背景分布估计的一致性。实验表明当前景变化显著时本文方法相比于现有方法具有更为鲁棒的表现。  相似文献   

12.
林玲鹏  黄添强  林晶 《计算机应用》2017,37(11):3128-3133
针对运动目标在发生遮挡、形变、旋转和光照等变化时会导致跟踪误差大甚至丢失目标以及传统跟踪算法实时性差的问题,提出了一种融合前景判别和圆形搜索(CS)的目标跟踪算法。该算法采用了图像感知哈希技术来描述与匹配跟踪目标,跟踪过程使用了两种跟踪策略相结合的方法,能够有效地解决上述问题。首先,根据目标运动方向的不确定性和帧间目标运动的缓慢性,通过CS算法搜索当前帧局部(目标周围)最佳匹配位置;然后,采用前景判别PBAS算法搜索当前帧全局最优目标前景;最终,选取两者与目标模板相似度更高者为跟踪结果,并根据匹配阈值判断是否更新目标模板。实验结果表明,所提算法在精度、准确率和实时性上都比MeanShift算法更好,在目标非快速运动时有较好的跟踪优势。  相似文献   

13.
目的 针对多运动目标在移动背景情况下跟踪性能下降和准确度不高的问题,本文提出了一种基于OPTICS聚类与目标区域概率模型的方法。方法 首先引入了Harris-Sift特征点检测,完成相邻帧特征点匹配,提高了特征点跟踪精度和鲁棒性;再根据各运动目标与背景运动向量不同这一点,引入了改进后的OPTICS加注算法,在构建的光流图上聚类,从而准确的分离出背景,得到各运动目标的估计区域;对每个运动目标建立一个独立的目标区域概率模型(OPM),随着检测帧数的迭代更新,以得到运动目标的准确区域。结果 多运动目标在移动背景情况下跟踪性能下降和准确度不高的问题通过本文方法得到了很好地解决,Harris-Sift特征点提取、匹配时间仅为Sift特征的17%。在室外复杂环境下,本文方法的平均准确率比传统背景补偿方法高出14%,本文方法能从移动背景中准确分离出运动目标。结论 实验结果表明,该算法能满足实时要求,能够准确分离出运动目标区域和背景区域,且对相机运动、旋转,场景亮度变化等影响因素具有较强的鲁棒性。  相似文献   

14.
目的 针对现有的超像素目标跟踪算法(RST)对同一类中分别属于目标和相似干扰物体的超像素块赋予相同特征置信度,导致难以区分目标和相似干扰物的问题,为此提出自适应紧致特征的超像素目标跟踪算法(ACFST)。方法 该方法在每帧的目标搜索区域内构建适合目标大小的自适应紧致搜索区域,并将该区域内外的特征置信度分别保持不变和降低。处于背景中的相似干扰物体会被该方法划分到紧致搜索区域外,其特征置信度被降低。当依据贝叶斯推理框架求出对应最大后验概率的目标时,紧致搜索区域外的特征置信度低,干扰物体归属目标的程度也低,不会被误判为目标。结果 在具有与目标相似干扰物体的两个视频集进行测试,本文ACFST跟踪算法与RST跟踪算法相比,平均中心误差分别缩减到5.4像素和7.5像素,成功率均提高了11%,精确率分别提高了10.6%和21.6%,使得跟踪结果更精确。结论 本文提出构建自适应紧致搜索区域,并通过设置自适应的参数控制紧致搜索区域变化,减少因干扰物体与目标之间相似而带来的误判。在具有相似物体干扰物的视频集上验证了本文算法的有效性,实验结果表明,本文算法在相似干扰物体靠近或与目标部分重叠时,能够保证算法精确地跟踪到目标,提高算法的跟踪精度,具有较强的鲁棒性,使得算法更能适应背景杂乱、目标遮挡、形变等复杂环境。  相似文献   

15.
目的 为解决运动目标跟踪时因遮挡、尺度变换等产生的目标丢失以及传统匹配跟踪算法计算复杂度高等问题,提出一种融合图像感知哈希技术的运动目标跟踪算法.方法 本文算法利用感知哈希技术提取目标摘要进行模板图像识别匹配,采用匹配跟踪策略和搜索跟踪策略相配合来准确跟踪目标,并构建模板评价函数和模板更新准则实现目标模板的自适应更新,保证其在目标发生遮挡和尺度变换情况下的适应性.结果 该算法与基于NCC(normalized cross correlation)的模板匹配跟踪算法、Mean-shift跟踪算法以及压缩跟踪算法相比,在目标尺度变换和物体遮挡时,跟踪的连续性和稳定性更好,且具有较低的计算复杂度,能分别降低跟踪系统约6.2%、 6.3%、 9.3%的计算时间.结论 本文算法能有效实现视频场景中目标发生遮挡及尺度变换情况下的跟踪,跟踪的连续性和稳定性良好,且算法具有较低的计算复杂度,有利于实时性跟踪系统的构建.  相似文献   

16.
基于超像素的点追踪方法   总被引:1,自引:1,他引:1       下载免费PDF全文
目的由于当前大多数的追踪算法都是使用目标外观模型和特征进行目标的匹配,在长时间的目标追踪过程中,目标的尺度和形状均会发生变化,再加上计算机视觉误差,都会导致追踪的失误。提出一种高效的目标模型用于提高追踪的效率和成功率。方法采用分割后提取的目标特征来进行建模表示外观结构,利用图像分割的方法,将被追踪的目标区域分割成多个超像素块,结合SIFT特征,形成词汇本,并计算每个词在词汇本中的权值,作为目标的外观模型。利用外观模型确定目标对象的关键点位置后,通过使用金字塔Lucas-Kanade追踪器预测关键点在下一帧图像中的位置,并移动追踪窗口位置。结果结合点位移的加权计算有效地克服目标尺度和形状变化产生的问题。结论实验结果表明在目标发生形变或光照变化的情况下,算法也能准确地、实时地追踪到目标。  相似文献   

17.
程昱宇  钱小燕 《计算机应用》2013,33(10):2907-2910
为了提高跟踪精度,提出一种基于局部抠像的融合图像全自动精确跟踪算法。首先采用帧间差分法获取运动目标的大致区域,并自动生成局部抠像框,由此采集目标、背景代表颜色集合;在此基础上自动生成抠像所需的草图,实现对目标的抠像;最后对抠像产生的前景映射图进行边缘检测即可获取精确的目标轮廓,并可根据跟踪结果对模型进行更新。对于实验的图像序列,与目标实际中心相比较,抠像跟踪误差均值为0.9像素,传统均值漂移跟踪误差均值为5.2像素。实验结果表明,该方法跟踪结果能完整、清晰地表示目标轮廓,很好地解决了跟踪中的漂移问题,提升了跟踪精度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号