首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对目标遮挡、非刚性变换、光照变换等因素干扰产生的漂移问题,提出基于超像素和判别稀疏的运动目标跟踪算法。算法首先利用SLIC方法对运动目标的观测区域进行超像素分割,然后通过K-Means算法构建包含目标和背景的超像素字典,再基于判别稀疏表示和[?1]范数最小化框架求解候选目标的稀疏系数,同时结合粒子滤波框架和在线字典更新策略完成目标跟踪。实验结果表明,该算法在多种因素干扰的环境中具有较强的鲁棒性,能够准确稳定地进行在线目标跟踪。  相似文献   

2.
在复杂背景下,传统轮廓跟踪方法会发生漂移,甚至丢失目标。针对上述问题,提出一种基于局部模型匹配(LMM)的目标轮廓跟踪算法。利用超像素技术结合EMD相似性度量构建局部特征模型,从而进行局部模型匹配。结合粒子滤波的Snake模型作提取目标轮廓,实现目标轮廓精确跟踪。实验结果表明,该算法在目标形变、部分遮挡、复杂背景等条件下均具有较高的跟踪成功率。与多种目标轮廓跟踪算法进行对比,该算法具有较高的准确性和鲁棒性。  相似文献   

3.
林玲鹏  黄添强  林晶 《计算机应用》2017,37(11):3128-3133
针对运动目标在发生遮挡、形变、旋转和光照等变化时会导致跟踪误差大甚至丢失目标以及传统跟踪算法实时性差的问题,提出了一种融合前景判别和圆形搜索(CS)的目标跟踪算法。该算法采用了图像感知哈希技术来描述与匹配跟踪目标,跟踪过程使用了两种跟踪策略相结合的方法,能够有效地解决上述问题。首先,根据目标运动方向的不确定性和帧间目标运动的缓慢性,通过CS算法搜索当前帧局部(目标周围)最佳匹配位置;然后,采用前景判别PBAS算法搜索当前帧全局最优目标前景;最终,选取两者与目标模板相似度更高者为跟踪结果,并根据匹配阈值判断是否更新目标模板。实验结果表明,所提算法在精度、准确率和实时性上都比MeanShift算法更好,在目标非快速运动时有较好的跟踪优势。  相似文献   

4.
为了解决复杂场景下,基于整体表观模型的目标跟踪算法容易丢失目标的问题,提出了一种多模型协作的分块目标跟踪算法.融合基于局部敏感直方图的产生式模型和基于超像素分割的判别式模型构建目标表观模型,提取局部敏感直方图的亮度不变特征来抵制光照变化的影响;引入目标模型的自适应分块划分策略以解决局部敏感直方图算法缺少有效遮挡处理机制的问题,提高目标的抗遮挡性;通过相对熵和均值聚类度量子块的局部差异置信度和目标背景置信度,建立双权值约束机制和子块异步更新策略,在粒子滤波框架下,选择置信度高的子块定位目标.实验结果表明,该方法在复杂场景下具有良好的跟踪精度和稳定性.  相似文献   

5.
目的 在复杂背景下,传统轮廓跟踪方法只考虑了目标的整体特征或显著性特征,没有充分利用目标的局部特征信息,尤其是目标发生遮挡时,容易发生跟踪漂移,甚至丢失目标.针对上述问题,提出一种基于局部模型匹配的几何活动轮廓(LM-GAC)跟踪算法.方法 首先,利用超像素技术将图像中的颜色特征相似的像素点归为一类,形成由一些像素点组成的超像素,从而把目标分割成若干个超像素块,再结合EMD(earth mover's distance)相似性度量构建局部特征模型.然后,进行局部模型匹配,引入噪声模型来估算局部模型参数θ,这样可以增强特征模型的自适应性,提高局部模型匹配的准确性.最后,结合粒子滤波的水平集分割方法提取目标轮廓,实现目标轮廓精确跟踪.结果 本文算法与多种目标轮廓跟踪算法进行对比,在部分遮挡、目标形变、光照变化、复杂背景等条件的基准图像序列均具有较高的跟踪成功率,平均成功率为79.6%.结论 实验结果表明,根据不同的图像序列,可以自适应地实时改变噪声模型参数和粒子的权重,使得本文算法具有较高的准确性和鲁棒性.特别是在复杂的背景下,算法能较准确地进行目标轮廓跟踪.  相似文献   

6.
目的 近年来,目标跟踪领域取得了很大进步,但是由于尺度变化,运动,形状畸变或者遮挡等造成的外观变化,仍然是目标跟踪中的一大挑战,因而有效的图像表达方法是提高目标跟踪鲁棒性的一个关键因素。方法 从中层视觉角度出发,首先对训练图像进行超像素分割,将得到特征向量集以及对应的置信值作为输入值,通过特征回归的方法建立目标跟踪中的判别外观模型,将跟踪图像的特征向量输入该模型,得到候选区域的置信值,从而高效地分离前景和背景,确定目标区域。结果 在公开数据集上进行跟踪实验。本文算法能较好地处理目标尺度变化、姿态变化、光照变化、形状畸变、遮挡等外观变化;和主流跟踪算法进行对比,本文算法在跟踪误差方面表现出色,在carScale、subway、tiger1视频中能取得最好结果,平均误差为12像素,3像素和21像素;和同类型的方法相比,本文算法在算法效率上表现出色,所有视频的跟踪效率均高于同类型算法,在carScale视频中的效率,是同类算法效率的32倍。结论 实验结果表明,本文目标跟踪算法具有高效性和鲁棒性,适用于目标发生外观变化时的目标跟踪问题。目前跟踪中只用了单一特征,未来考虑融合多特征来提升算法鲁棒性和准确度。  相似文献   

7.
提出了一种新的基于生成-判别模型的目标检测与跟踪方法。利用DAISY特征描述子所具有的对光照、形变、视角、尺度的不变性以及计算高效的特点,提取目标稳定的特征点并加以表达,形成生成模型;采用霍夫森林分类器作为判别模型,用以训练目标图像块。在后续视频序列中利用目标的检测结果和判别码本的相似性测量对模型进行更新,构建一个动态自适应的判别码本。实验证明这种将快速有效的DAISY描述子和识别率高、鲁棒性强的霍夫森林分类器相结合的算法,跟踪精度高、实时性较好,具有目标局部防遮挡能力和不同分辨率下的识别能力。  相似文献   

8.
一种基于纹理模型的Mean Shift目标跟踪算法   总被引:6,自引:0,他引:6  
在Mean Shift跟踪算法中,目标表示方法对跟踪性能有着重要影响.本文以局部二值模式(LBP)纹理模型作为研究对象,分析LBPi,1ri的9种纹理模式所表示的图像特征,提出用LBP8,1ri纹理模型中表示边界和角的5种基本模式表示目标的算法,称为FLBP8,1,并将FLBP8,1模式成功嵌入Mean Shift算法进行目标跟踪.FLBP8,1有效结合目标的边界及其纹理特征,能够自动提取目标的关键模式点,利用少量的关键点准确表示目标,因此计算复杂度较低.实验结果表明,在复杂的条件下,本文方法比基于颜色的表示法在目标表示的准确性和跟踪性能上均有明显提高.  相似文献   

9.
前景约束下的抗干扰匹配目标跟踪方法   总被引:1,自引:0,他引:1  
传统模型匹配跟踪方法没有充分考虑目标与所处图像的关系,尤其在复杂背景下,发生遮挡时易丢失目标.针对上述问题,提出一种前景约束下的抗干扰匹配(Anti-interference matching under foreground constraint,AMFC)目标跟踪方法.该方法首先选取图像帧序列前m帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立判别外观模型;然后,采用EM(Expectation maximization)模型建立约束性前景区域,通过基于LK(Lucas-Kanade)光流法框架下的模型匹配寻找最佳匹配块.为了避免前景区域中相似物体的干扰,提出一种抗干扰匹配的决策判定算法提高匹配的准确率;最后,为了对目标的描述更加准确,提出一种新的在线模型更新算法,当目标发生严重遮挡时,在特征集中加入适当特征补偿,使得更新的外观模型更为准确.实验结果表明,该算法克服了目标形变、目标旋转移动、光照变化、部分遮挡、复杂环境的影响,具有跟踪准确和适应性强的特点.  相似文献   

10.
针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高.  相似文献   

11.
赵宇宙  陈宗海 《控制与决策》2014,29(10):1788-1792
针对复杂环境下的视觉目标鲁棒跟踪问题,模拟人视觉选择注意显著区域的智能特性,提出一种在线选择目标显著子区域的跟踪方法。根据中心-周围差异和相对背景的差异提取具有区分性的子区域,通过跟踪误差分析子区域时序一致性,选择稳定的显著子区域,利用子区域局部与目标整体的空间关系估计目标位置。实验结果表明,通过动态选择显著的目标子区域,能够提高对部分遮挡和背景相似干扰影响的适应性。  相似文献   

12.
目的 前景检测是视频监控领域的研究重点之一。LOBSTER(local binary similarity segmenter)算法把ViBe(visual background extractor)算法和LBSP(local binary similarity patterns)特征结合起来,在一般场景下取的了优良的检测性能,但是LOBSTER算法在动态背景下适应性差、检测噪声多。针对上述问题,提出一种改进的LOBSTER算法。方法 在模型初始化阶段,计算各像素的LBSP特征值,并分别把像素的灰度值和LBSP特征值添加到各像素的颜色背景模型与LBSP背景模型中,增强了背景模型的描述能力;在像素分类阶段,根据背景复杂度自适应调整每个像素在颜色背景模型和LBSP背景模型中的分类阈值,降低了前景中的噪声;在模型更新阶段,根据背景复杂度自适应调整每个像素背景模型的更新策略,提高背景模型对动态背景的适应能力。结果 本文算法与ViBe算法和LOBSTER算法进行了对比实验,本文算法的前景图像比ViBe算法和LOBSTER算法的噪声点大幅较低,本文算法的PCC指标在不同视频库中比ViBe算法提高0.736%7.56%,比LOBSTER算法提高0.77% 12.47%,FPR指标不到ViBe算法和LOBSTER算法的1%。结论 实验仿真结果表明,在动态背景的场景下,本文算法比ViBe算法和LOBSTER算法检测到的噪声少,具有较高的准确率和鲁棒性。  相似文献   

13.
In this paper, a statistical model called statistical local spatial relations (SLSR) is presented as a novel technique of a learning model with spatial and statistical information for semantic image classification. The model is inspired by probabilistic Latent Semantic Analysis (PLSA) for text mining. In text analysis, PLSA is used to discover topics in a corpus using the bag-of-word document representation. In SLSR, we treat image categories as topics, therefore an image containing instances of multiple categories can be modeled as a mixture of topics. More significantly, SLSR introduces spatial relation information as a factor which is not present in PLSA. SLSR has rotation, scale, translation and affine invariant properties and can solve partial occlusion problems. Using the Dirichlet process and variational Expectation-Maximization learning algorithm, SLSR is developed as an implementation of an image classification algorithm. SLSR uses an unsupervised process which can capture both spatial relations and statistical information simultaneously. The experiments are demonstrated on some standard data sets and show that the SLSR model is a promising model for semantic image classification problems.
Wenhui Li (Corresponding author)Email:

Dongfeng Han   received the B.Sc. 2002 and M.S. 2005 in computer science and technology from Jilin University, Changchun, P. R. China. From 2005, he pursuits the PhD degree in computer science and technology Jilin University. His research interests include computer vision, image processing, machine learning and pattern recognition. Wenhui Li   received the PhD degree in computer science from Jilin University in 1996. Now he is a professor of Jilin University. His research interests include computer vision, computer graphic and virtual reality. Zongcheng Li   undergraduated student of Shandong University of Technology, P. R. China. His research interests include computer vision and image processing.   相似文献   

14.
目标跟踪是计算机视觉和图像处理的一个重点课题,在视频监控、机器人视觉导航以及智能交通控制中具有广泛的应用前景.通过粒子滤波技术,研究了如何整合颜色特征、前景信息和积分图运算等技术实现视频目标跟踪的粒子滤波算法.在对目标进行分割中采用了混合高斯背景建模方法;同时结合积分直方图的计算方法对颜色特征进行分段统计及相互遮挡的判断,实现基于粒子滤波的目标跟踪算法的优化,解决跟踪中诸如遮挡、光照变化、背景干扰、尺寸变化等难以解决的问题.实验结果表明提出的方法达到了预期目标.  相似文献   

15.
为克服光照变化和目标遮挡对运动目标跟踪的影响,提出了一种基于改进的局部敏感直方图的多区域目标跟踪算法。改进了局部敏感直方图并设计了快速算法;将改进的局部敏感直方图作为多区域跟踪算法中的目标建模方式,提高目标建模的准确性且降低提取目标特征的计算复杂度;针对多区域跟踪算法中融合各个区域块的特征相似值的需要,采用基于统计排序和最小二乘估计的参数估计方法计算整个目标块与模板的相似度。实验结果表明该算法能有效应对目标跟踪过程中光照变化、目标形变与遮挡的干扰,实现实时鲁棒的目标跟踪。  相似文献   

16.
基于潜在局部区域空间关系学习的物体分类算法   总被引:1,自引:0,他引:1  
韩东峰  李文辉  郭武 《计算机学报》2007,30(8):1286-1294
提出了一种物体分类模型--潜在局部区域空间关系模型及实现算法.模型描述物体各部分间的潜在空间关系,将抗缩放和仿射变换的特征区域方法与模型相结合,采用变分期望值最大方法进行学习.与同类空间关系模型算法比较,该文模型算法具有以下优点:(1)为非监督式学习模型;(2)可抵抗几何变换;(3)模型为稠密模型;(4)模型描述的是一种潜在的空间关系,这种关系对物体具有更本质的描述.在标准测试图像库上的实验表明了该算法在抵抗平移、旋转、尺度缩放、仿射变换和部分遮挡等难点问题上具有优势.  相似文献   

17.
提出了一种新的运动目标分割算法。首先利用像素的颜色、空间的和帧间的特性信息结合贝叶斯判别定理对视频图像进行粗分割,得到一个前景目标的二值图,由于该类方法基于像素间彼此独立的假设,导致分割出的前景目标不完整存在很多空洞。其次,基于前景目标局部邻域空间的一致性假设,计算该邻域内像素间的互相关系数;同时,基于背景的帧间连续性和前景的不连续性,计算像素帧间的互相关系数。最后,依据像素的互相关系数在该邻域内进行二次判决,以填补粗分割中前景目标内部的空洞。实验表明,在复杂背景交通视频中该分割算法具有较强的鲁棒性,并能获得更完整准确的前景目标。  相似文献   

18.
目标跟踪是计算机视觉领域一个重要的研究方向,近年来学者提出了众多优秀的目标跟踪算法,但许多算法的低实时性制约了其在应用场景中的有效性。针对这些算法,提出了一个通用的跟踪模型,并针对此模型提出了一个可行的并行优化方案。之后使用SCM算法验证了所提出的并行优化方案。在四核CPU的环境下,并行后的SCM算法相比于未并行的算法取得了3.48倍的并行加速比,并且比原算法Matlab+C程序的运行速度快了约30倍,这说明了所提出的并行优化方案的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号