首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This letter reports the importance and advantages of the constraints in the Redlich-Peterson isotherm exponent.  相似文献   

2.
The objective of this study is to assess the uptake of hexavalent chromium (Cr(VI)) from aqueous solutions onto activated carbons (AC) produced from wood. Two activated carbons are tested, a KOH-activated carbon and a commercial H3PO4-activated carbon (Acticarbone CXV). The adsorption of Cr(VI) is maximal at the lowest values of pH (pH 3) and increases with temperature for both adsorbents. The KOH-activated carbon shows higher capacity for adsorption of Cr(VI) than Acticarbone. The sorption isotherms fit the Langmuir model accurately. The adsorption reaction was found to obey a pseudo second-order rate. The activation energy and the pre-exponential factor as well as the thermodynamic functions related to adsorption reaction, DeltaS degrees , DeltaH degrees , DeltaG degrees , were determined. Nevertheless, the global reaction rate is probably controlled by the intra-particular diffusion of Cr(VI) and the mass diffusivity of Cr(VI) was evaluated.  相似文献   

3.
The removal of zinc ions from aqueous solutions on the biomass of Azadirachta indica bark has been studied by using batch adsorption technique. The biosorption studies were determined as a function of contact time, pH, initial metal ion concentration, average biosorbent size and biosorbent dosage. The equilibrium metal uptake was increased and percentage biosorption was decreased with an increase in the initial concentration and particle size of biosorbent. The maximum zinc biosorption occurred at pH 6 and percentage biosorption increases with increase in the biosorbent dosage. Experimental data obtained were tested with the adsorption models like Langmuir, Freundlich and Redlich-Peterson isotherms. Biosorption isothermal data were well interpreted by Langmuir model with maximum biosorption capacity of 33.49mg/g of zinc ions on A. indica bark biomass and kinetic data were properly fitted with the pseudo-second-order kinetic model.  相似文献   

4.
Immobilization of heavy metals from contaminated environments is an emerging field of interest from both resource conservation and environmental remediation points of view. This study investigated the feasibility of using phosphatic clay, a waste by-product of the phosphate mining industry, as an effective sorbent for Pb from aqueous effluents. The major parameters controlling aqueous Pb removal, viz. initial metal ion concentrations, solution pH, sorbent amounts, ionic strength and presence of both inorganic and organic ligands were evaluated using batch experiments. Results demonstrated that aqueous Pb removal efficiency of phosphatic clay is controlled mainly by dissolution of phosphatic clay associated fluoroapatite [Ca(10)(PO(4))(5)CaCO(3)(F,Cl,OH)(2)], followed by subsequent precipitation of geochemically stable pyromorphite [Pb(10)(PO(4))(6)(F,Cl,OH)(2)], which was confirmed by both X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis. Lead removal efficiency of phosphatic clay increased with increasing pH, sorbent amount and decreasing ionic strength. It also depends on the nature of complexing ligands. Formation of insoluble calcium oxalate and lead oxalate in the presence of oxalic acid explained high uptake of Pb by phosphatic clay from aqueous solution. However, Pb sorption kinetics onto phosphatic clay were biphasic, with initially fast reactions followed by slow and continuous Pb removal reactions. The slow reactions may include surface sorption, co-precipitation and diffusion. The exceptional capability of phosphatic clay to remove aqueous Pb demonstrated its potential as a cost effective way to remediate Pb-contaminated water, soils and sediments.  相似文献   

5.
In this study, eucalyptus camaldulensis bark, a forest solid waste, is proposed as a novel material for the removal of mercury(II) from aqueous phase. The operating variables studied were sorbent dosage, ionic strength, stirring speed, temperature, solution pH, contact time, and initial metal concentration. Sorption experiments indicated that the sorption capacity was dependent on operating variables and the process was strongly pH-dependent. Kinetic measurements showed that the process was uniform and rapid. In order to investigate the mechanism of sorption, kinetic data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations, and intraparticle diffusion model. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The Langmuir model yields a much better fit than the Freundlich model. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. The maximum sorption capacity was 33.11 mg g−1 at 20 °C and the negative value of free energy change indicated the spontaneous nature of sorption. These results demonstrate that eucalyptus bark is very effective in the removal of Hg(II) from aqueous solutions.  相似文献   

6.
This letter reports the way to solve the Redlich-Peterson isotherm. In addition the importance of constraints for the Redlich-Peterson isotherm exponent was discussed in detail.  相似文献   

7.
The capacity of hydroxyapatite (HAp) to remove lead from aqueous solution was investigated under different conditions, namely initial metal ion concentration and reaction time. The sorption of lead from solutions containing initial concentrations from 0 to 8000 mg/L was studied for three different HAp powders. Soluble Pb and Ca monitoring during the experiment allows characterizing the mechanism of lead uptake. Dissolution of calcium is followed by the formation of a solid solution, Pb(x)Ca(10-x)(PO4)6(OH)2, with a Ca/P ratio decreasing continuously. Langmuir-Freundlich classical adsorption isotherms modeled adsorption data. The adsorption capacities calculated from this equation vary from 330 to 450 mg Pb/g HAp for the different solids. Modeling of the sorption process allows to determine theoretical saturation times and residual lead concentrations at equilibrium.  相似文献   

8.
The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.  相似文献   

9.
10.
Cr(VI) is a priority pollutant and has been documented to be harmful to fauna, flora and human beings and chromium containing water and wastewater are hazardous. Removal of Cr(VI) by adsorption on a non-toxic natural substance, riverbed sand has been investigated. A maximum removal of 74.3% was noted at 0.50 x 10(-4)M concentration of Cr(VI) in solution. Kinetic and equilibrium studies of Cr(VI) removal have been carried out. Chemical analysis of the adsorbent revealed SiO2 to be its major component. Kinetic data of adsorption was fitted by Lagergreen's model and k(ad), the rate constant of adsorption, was found be maximum 2.69 x 10(-2)min(-1) at 25 degrees C with minimum at 35 degrees C. Values of coefficients of intra-particle diffusion and mass transfer have been determined at different values of temperature. Langmuir's model has been used for equilibrium studies and the constants have been calculated. The studies conducted show the process of Cr(VI) removal to be exothermic in nature.  相似文献   

11.
Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100–500 mg/l), pH (2–8), particle size (45–112.5 μm) and temperature (293–323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135–180 and 15–34 mg/g for RB, 47–86 and 1.9–3.7 mg/g for RR and 37–61 and 3.0–3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature.  相似文献   

12.
This study focused on the biosorption of total chromium onto red algae (Ceramium virgatum) biomass from aqueous solution. Experimental parameters affecting biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of C. virgatum biomass for total chromium was found to be 26.5 mg/g at pH 1.5 and 10 g/L biomass dosage, 90 min equilibrium time and 20 °C. From the D–R isotherm model, the mean free energy was calculated as 9.7 kJ/mol, indicating that the biosorption of total chromium was taken place by chemisorption. The calculated thermodynamic parameters (ΔG°, ΔH°and ΔS°) showed that the biosorption of total chromium onto C. virgatum biomass was feasible, spontaneous and exothermic at 20–50 °C. Kinetic evaluation of experimental data showed that the biosorption processes of total chromium followed well pseudo-second-order kinetics.  相似文献   

13.
Ma Y  Shi F  Zheng X  Ma J  Gao C 《Journal of hazardous materials》2011,185(2-3):1073-1080
Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB) was studied by batch and column adsorption experiments. The results of the batch adsorption experiments demonstrated that the maximum fluoride removal was obtained at pH of 4.95 and it took 40 min to attain equilibrium. Kinetics data fitted pseudo-second-order model. Batch adsorption data was better described by Redlich-Peterson and Freundlich isotherm models than Langmuir isotherm model. The adsorption type of GHB was ion exchange. Column experiments were carried out at different influent fluoride concentrations and different flow rates. The capacities of the breakthrough and exhaustion points increased with the decrease of flow rate and the increase of initial fluoride concentration. The experimental results were well fitted with Thomas model. Exhausted GHB was regenerated by alkali/alum treatment. The total sorption capacity of GHB was increased after regeneration and activation.  相似文献   

14.
The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R(2)>0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), and the activation energy (E(a)) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.  相似文献   

15.
Here, Syzygium cumini leaf extract (LE) and seed extract (SE) were explored for the synthesis of gold nanoparticles (GNP). LE and SE as well as their polar (water) fractions showed potential for GNP synthesis. Comparative synthesis kinetics and morphological characterisation studies revealed the synthesis of smaller sized GNP by LE than SE. Only polar (water) fractions showed potential for GNP synthesis, which are smaller in size compared to their respective extracts. SE contained more polyphenols and biochemical constituents than LE and therefore, showed higher synthesis rate and bigger sized GNP. Atomic force microscope and scanning electron microscope analysis indicated that both extracts and their fractions catalysed the synthesis of spherical GNP. The average size of GNP synthesised by LE, leaf water fraction (LWF), SE and seed water fraction (SWF) were 24, 23, 35 and 32?nm, respectively. Fourier transform infrared analysis identified the biomolecules involved in the synthesis and stability of GNP. This study documented the potential of S. cumini for the synthesis of GNP in addition to silver nanoparticles (SNP). However, nature and types of polyphenols involved in GNP synthesis seem to be different from that involved in SNP synthesis. This might be the possible reason for smaller sized GNP that SNP.  相似文献   

16.
The biosorption of copper(II) ions from aqueous solution by Tectona grandis L.f. was studied in a batch adsorption system as a function of pH, metal ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of copper(II) ions onto T. grandis L.f. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model with maximum adsorption capacity of 15.43 mg/g of copper(II) ion on T. grandis L.f. leaves powder. The kinetic experimental data properly correlated with the second-order kinetic model. Various thermodynamic parameters such as deltaG(o), deltaH(o), and deltaS(o) were calculated indicating that this system was a spontaneous and exothermic process.  相似文献   

17.
Removal of fluoride from aqueous solution using protonated chitosan beads   总被引:5,自引:0,他引:5  
In the present study, chitosan in its more usable bead form has been chemically modified by simple protonation and employed as a most promising defluoridating medium. Protonated chitosan beads (PCB) showed a maximum defluoridation capacity (DC) of 1664mgF-/kg whereas raw chitosan beads (CB) possess only 52mgF-/kg. Sorption process was found to be independent of pH and altered in the presence of other co-existing anions. The sorbents were characterized using FTIR and SEM with EDAX analysis. The fluoride sorption on PCB follows both Freundlich and Langmuir isotherms. Thermodynamic parameters, viz., DeltaG degrees , DeltaH degrees DeltaS degrees and Ea indicate that the nature of fluoride sorption is spontaneous and endothermic. The sorption process follows pseudo-second-order and intraparticle diffusion kinetic models. 0.1M HCl was identified as the best eluent. The suitability of PCB has been tested with field samples collected from a nearby fluoride-endemic area.  相似文献   

18.
Use of low-cost hybrid precursor, prepared from rice hull has been studied as a sorbent for the removal of Pb(2+) from aqueous solutions. Effect of contact time, initial concentration, pH and temperature has been studied. The effect of temperature (30, 40, 50 and 60 degrees C) on adsorption phenomena has been studied and data have been analyzed using Langmuir isotherm. The change in enthalpy (Delta H) (-14.6179 kJ/mol), free energy (Delta G) and entropy (DeltaS) has also been evaluated. The negative values of Delta G and Delta H indicate the adsorption of lead ions on the surface of hybrid precursor to be spontaneous and exothermic under the experimental condition.  相似文献   

19.
The preparation, characterization, and sorption properties for Cu(II) and Pb(II) of manganese oxide coated sand (MOCS) were investigated. A scanning electron microscope (SEM), X-ray diffraction spectrum (XRD) and BET analyses were used to observe the surface properties of the coated layer. An energy dispersive analysis of X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) were used for characterizing metal adsorption sites on the surface of MOCS. The quantity of manganese on MOCS was determined by means of acid digestion analysis. The adsorption experiments were carried out as a function of solution pH, adsorbent dose, ionic strength, contact time and temperature. Binding of Cu(II) and Pb(II) ions with MOCS was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Cu(II) and Pb(II) adsorption by MOCS, the pH in solution was decreased. Cu(II) and Pb(II) uptake were found to increase with the temperature. Further, the removal efficiency of Cu(II) and Pb(II) increased with increasing adsorbent dose and decreased with ionic strength. The pseudo-first-order kinetic model, pseudo-second-order kinetic model, intraparticle diffusion model and Elovich equation model were used to describe the kinetic data and the data constants were evaluated. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) and Pb(II) onto MOCS, suggesting that the adsorption mechanism might be a chemisorption process. The activation energy of adsorption (E(a)) was determined as Cu(II) 4.98 kJ mol(-1) and Pb(II) 2.10 kJ mol(-1), respectively. The low value of E(a) shows that Cu(II) and Pb(II) adsorption process by MOCS may involve a non-activated chemical adsorption and a physical sorption.  相似文献   

20.
Biosorption is the effective method for the removal of heavy metal ions from wastewaters. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available, filamentous green algae Spirogyra sp. Batch experiments were conducted to determine the biosorption properties of the biomass and it was observed that the maximum adsorption capacity of Pb(II) ion was around 140mgmetal/g of biomass at pH 5.0 in 100min with 200mg/L of initial concentration. Temperature change in the range 20-40 degrees C affected the adsorption capacity and the nature of the reaction was found to be endothermic in nature. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. Various properties of the algae, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, thermal analysis by TGA, surface area calculation by BET method, surface morphology with scanning electron microscope images and surface functionality by FTIR. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. The results indicated that the biomass of Spirogyra sp. is an efficient biosorbent for the removal of Pb(II) from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号