首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
MgTi x Ni (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTi x Ni alloys after 90 h milling displayed the best electrochemical performance. The X-ray diffraction patterns showed that the alloy ball-milled for 90 h was amorphous with a widened diffraction peak. The charge-discharge tests indicated that these alloys had good electrochemical activation properties, and the MgTi0.2Ni alloy electrode exhibited the best cycle performance. The initial discharge capacity of the MgTi0.2Ni alloy reached up to 401.1 mAh·g−1, and the retention rate of capacity was 31.0% after 30 cycles, much higher than that of MgNi (17.3%). The Tafel polarization curves revealed that Ti addition could enhance the anticorrosion performance of these alloys in alkali solution, which was responsible for the ameliorated cyclic stability of these alloy electrodes.  相似文献   

2.
The equilibrium molalities of Tl + in the system {Tl 2SO4+Na2SO4+H2SO4+D2EHMTPA+n-C8H18+water} were measured at ionic strength from 0.1 mol/g in the aqueous phase containing Na2SO4 as a supporting electrolyte and at constant initial molality of extractant, in the organic phase at temperatures from 278.15 to 303.15 K. The standard extraction constants K0 at various temperatures were obtained by extrapolation and polynomial approximation methods. Thermodynamic properties for the extraction process were calculated.  相似文献   

3.
By introducing Cu, AlCoCrFeNiCu x (x values in molar ratio, x = 0, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5) alloys were designed and prepared. The effects of Cu on microstructure and properties of AlCoCrFeNi alloy were investigated. The introduction of Cu results in the formation of Cu-rich FCC solid solution phase when Cu content is low. There are two FCC solid solution phases, i.e., Cu-rich FCC solid solution phase and phase transformation-induced FCC solid solution phase, when the Cu content is more than 1.0. Both the yield stress and plastic strain of alloy show a turning point when the Cu content is 0.5. Among the seven alloys, Cu0.5 alloy exhibits the largest yield stress of 1187 MPa and the lowest plastic strain of 16.01 %.  相似文献   

4.
Disk alloys used in advanced gas turbine engines often contain significant amounts of Mo (2 wt% or greater), which is known to cause corrosion under Type I hot corrosion conditions (at temperatures around 900 °C) due to alloy-induced acidic fluxing. The corrosion resistance of several model and commercial Ni-based disk alloys with different amounts of Mo with and without Na2SO4 deposit was examined at 700 °C in air and in SO2-containing atmospheres. When coated with Na2SO4 those alloys with 2 wt% or more Mo showed degradation products similar to those observed previously in Mo-containing alloys, which undergo alloy-induced acidic fluxing Type I hot corrosion even though the temperatures used in the present study were in the Type II hot corrosion range. Extensive degradation was observed even after exposure in air. The reason for the observed degradation is the formation of sodium molybdate. Transient molybdenum oxide reacts with the sodium sulfate deposit to form sodium molybdate which is molten at the temperature of study, i.e., 700 °C, and results in a highly acidic melt at the salt alloy interface. This provides a negative solubility gradient for the oxides of the alloying elements, which results in continuous fluxing of otherwise protective oxides.  相似文献   

5.
Corrosion of iron–vanadium alloys containing 0 to 100% of vanadium is studied in dilute HCl and H2SO4 solutions by gravimetric method and by taking anodic polarization curves. Alloys containing no less than 30% of vanadium are readily passivated in sulfuric acid solution. Local passivity breakdowns (pitting or intergranular corrosion) are observed in HCl solutions. Apparent values of number of electrons, transfer coefficients, exchange currents, and corrosion currents are determined for active alloys. Catalytic action of V(II, III) and V(III) ions in cathodic process in aerated solutions is demonstrated.  相似文献   

6.
FeCrMoVTi x (x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.  相似文献   

7.
The electrochemical behavior of AMg-6 aluminum alloy in an aqueous acetate solutions with additions of sodium hydrophosphate, sodium benzoate, and benzotriazol at enhanced (up to 70°C) temperatures is studied. It is found that the time-resistant protective layers are formed upon the introduction of small amounts of sodium hydrophosphate (≤1%) or a mixture of sodium hydrophosphate and benzotriazol (0.5% Na2HPO4 + 0.2% BTA).  相似文献   

8.
Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner’ model.  相似文献   

9.
Methods for synthesizing and identifying water-soluble fullerenes (fullerenols) were developed. When used as additives to corrosive media, fullerenes exhibit weak catalytic activity towards electrochemical corrosion of aluminum and steel. On the contrary, after the treatment of aluminum and steel with aqueous solution of fullerenols, the rate of electrochemical corrosion (in 0.25 N solution of sulfuric acid) increases by a factor of almost ten. At the same time, the specific surface electric conductance of aluminum and steel decreases by ten orders of magnitude. Thus, the metallic surface acquires insulating properties.  相似文献   

10.
Effects of equal-channel angular pressing with controlled back pressure (ECAP-BP) and subsequent upsetting on the formation of the texture, magnetic properties, and changes in the microstructure of R-Fe-B-Cu (17–20 at. % R, R = Pr, Nd) alloys have been investigated. It has been shown that, under the action of ECAP-BP at 470°C, a high coercive force H c arises and a diametral texture is formed in the Pr-Fe-B-Cu alloys. Application of hot compression to alloys processed by ECAP-BP increases the degree of texture if the compression is applied in the direction of the initial texture axis or reorientes the texture axis in the direction of compression if the compression is applied in the direction perpendicular to the initial texture. It has been established that to obtain a high level of magnetic hysteresis properties in the Nd-Fe-B-Cu alloys, the combined hot deformation of these alloys should be carried out at temperatures above 500°C.  相似文献   

11.
Structure and atomic transport properties of liquid Na-K alloys are reported. Inter-diffusion coefficients of liquid Na x K1−x , alloys are calculated using scaling law proposed by Samanta et al. following Dzugutov which express the possible relationship between the excess entropy and diffusion coefficient. The interatomic interactions are described from the individual version of the electron-ion potential proposed by Fiolhais et al. The partial pair distribution functions and structure factors are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure. The evaluation with the composition of static structure and inter-diffusion properties are discussed.  相似文献   

12.
Regularities of the effect produced by Ce2(SO4)3 salt introduced in an aqueous electrolyte containing Zr(SO4)2 on the plasma-electrolytic formation of oxide coatings on titanium, their composition, and structure are studied. ZrO2 + CeO x + TiO2 three-phase oxide coatings with a thickness about 10 μm are obtained. The coatings involve ZrO2 cubic phase. The ZrO2-to-TiO2 phase ratio in the coatings can be controlled. The zirconium content in the coatings reaches 20 at %, while that of cerium is 3–5 at %. The surface layer (∼3-nm thick) contains Ce3+ (∼30%) and Ce4+ (∼70%). Pores in the surface part of coatings have diameters around or smaller than 1 μm and are regularly arranged. The obtained systems have a certain catalytic activity with respect to the oxidation of CO to CO2 at temperatures above 400–450°C. The coatings are corrosion-resistant in chloride-containing environments. The thickness h of coatings depending on the charge Q supplied to the cell is described by the equation h = h 0(Q/Q 0) n , where n = 0.35 and h 0 is the thickness of the coating formed at Q 0 = 1 C/cm2.  相似文献   

13.
The hot corrosion Type II of the alloys FeCr20, FeCr20Ni10, FeCr20Ni20, and FeCr20Co10 is investigated at 700°C in air + 0.5% SO2 with deposits consisting of Na2SO4 and a eutectic mixture of Na2SO4 and MgSO4 for 24, 100, and 300 h. The alloying elements nickel and cobalt have a positive influence when tests are conducted using a MgSO4‐Na2SO4 deposit. In this case, they reduce the metal loss and increase the time to the propagation stage. In contrast, when the alloys are exposed with a Na2SO4 deposit, these alloying elements increase the metal loss and allow for the transition to the propagation stage because they can form molten phases with the Na2SO4. During the incubation stage an oxide scale forms on the FeCr20 alloy, which is thicker than the one formed during exposure without a deposit, and iron oxides are observed, which precipitate in the deposit. The propagation stage occurs by a dissolution and precipitation mechanism forming localized pitting attack. Iron is the main species that dissolves and precipitates, while chromium remains mainly as an oxide beneath the initial surface. The additional elements are found in the pit and in the salt deposit.  相似文献   

14.
The stress corrosion cracking behaviour of plate material of the aluminium alloys 2024‐T351, 8090‐T8171, 7475‐T651, and 7075‐T7351 was investigated performing constant load tests. Short transverse tensile specimens were permanently immersed in aerated aqueous 0.6 M Na2Cl solutions with additions of Na2SO4, NaNO3, NaHCO3, NH4HCO3, Na2HPO4, Na2SO3 or Na2CO3. The concentration of the added salts was 0.06 M. The applied stress was 100 MPa, except with 7075‐T7351 specimens, which were loaded at 300 MPa. Environment induced failure was not observed in neutral 0.6 M NaCl solution. The various salts added promoted intergranular stress corrosion cracking with the alloys 2024‐T351, 8090‐T8171, and 7475‐T651. Threshold stresses were generally below 100 MPa. For 8090‐T8171 exposed to chloride containing electrolytes with additions of sulfate, hydrogen phosphate, or sulfite, threshold stresses were approximately 100 MPa or higher. Similar results were obtained for 7475‐T651 plate when immersed in chloride‐hydrogen phosphate and chloride‐carbonate solutions. Alloy 7075‐T7351 was resistant against intergranular stress corrosion cracking. Specimens suffered pitting corrosion during immersion in the corrosive environments. Failure observed with 7075‐T7351, in particular when exposed to the chloride‐nitrate solution, was associated with reduction of cross‐sectional area due to pitting and transgranular stress corrosion cracking.  相似文献   

15.
Corrosion of boilers and heat exchangers is accelerated in the presence of vanadium, sodium, and sulfur from low-grade fuels. Several iron- and nickel-based alloys were immersed in 60 mol% V2O5–40Na2SO4 salt for 1000 h in order to investigate their degradation behavior at 600 °C in air. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Their corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of scale oxides in the molten deposit, and their precipitation near the outer surface of the deposit. High Ni- and Cr-containing alloys show the lowest metal loss rates. Al addition was detrimental due to low-melting eutectic AlVO4–V2O5 formation. Fe–Cr-based alloys showed the highest metal loss rates. In such alloys, high Cr additions (above 20%) did not improve the performance due to the negative synergetic effect by simultaneous dissolution of Fe2O3 and Cr2O3. The predominant salt composition at the corrosion front varied from vanadate rich to sulfate rich during the exposure. This change in the attacking salt makes it difficult to find a protective material for mixed sulfate–vanadate-induced corrosion.  相似文献   

16.
FeAlCrNiMo x high-entropy alloys were prepared. The effect of Mo content on the microstructure and the properties of the alloys were investigated. When the Mo content was 0.1, the alloys were composed of single BCC solid solution; when Mo content reaches 0.25, the alloys were composed of BCC solid solution and ordered B2 solid solution. When Mo content is more than 0.75, some σ phases emerged. The volume fraction of the second phase increases with the increasing Mo content, and the crystal grains became coarsening. The yield strength, fracture strength, and hardness increase with the increasing Mo content and reach 2252, 2612 MPa, and 1006 Hv, respectively. The magnetic transformation undergoes from the ferromagnetism to paramagnetism with the increasing Mo content. The saturation intensity and remnant magnetism are decreased with the increasing Mo content.  相似文献   

17.
Peculiarities in the corrosion behaviour of high chromium and molybdenum containing alloys in hot 92.5% sulfuric acid In laboratory tests at temperatures above 50°C unusual high corrosion rates of passivating stainless steels and nickel alloys containing more than 26% Cr were observed in 92.5% sulphuric acid. In order to investigate the cause of this phenomenon further corrosion tests and additional chemical analyses were performed. The H2SO4 concentration tested displays a relative maximum of the electrical conductivity, the reason being a stronger dissociation of the sulfuric acid. Electrochemical investigations revealed an enhanced activity of the cathodic reactions which lead to higher corrosion rates. The cathodic reactions are strongly dependend on alloy constitution with special emphasis on the contents of Cr, Ni and Mo. Mo containing stainless steel show potential oscillations (of the open circuit potential) between ?50 and +550 mVH. These alloys corrode under development of SO2 (reduction of H2SO4 molecules) and formation of several sulfur compounds with different oxidation numbers (6+ and 2?). Alloys with chromium contents above 26% develop additionally hydrogen gas due to a lower hydrogen overvoltage of these alloys. With increasing nickel content the overvoltage for the reduction reaction of H2SO4 molecules will be lowered. This fact results in an elevation of the exchange current density for the Alloy NiCr45 and therefore to the highest corrosion rate observed. Alloy B-2 shows the best resistance, i.e. very low corrosion rates. Obviously high levels of molybdenum can compensate the influence of nickel on the overvoltage of the reduction reaction or even hinder the cathodic reaction.  相似文献   

18.
Protection against corrosion using Sinapis alba was studied for the corrosion control of stainless steel in 0.5 M HCl. The electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy were used for the stainless steel protection studies. Surface morphology studies were done using scanning electron microscopy/energy dispersive X-ray analysis. Kinetic and thermodynamic parameters were evaluated and discussed. The mechanism for the corrosion inhibition was proposed. The obtained results showed that Sinapis alba acted as a mixed-type inhibitor, with the maximum inhibition efficiency of 88% for the concentration of 0.1 g L–1 at 323K. It was chemically adsorbed on stainless steel and obeyed the Langmuir adsorption isotherm. Sinapis alba emerged as an effective eco-friendly corrosion inhibitor for the corrosion control of stainless steel in the HCl acid medium. Surface morphology studies confirmed the adsorption of this inhibitor onto the surface of the metal. The results obtained via potentiodynamic polarisation and electrochemical impedance spectroscopy was in agreement with each other.  相似文献   

19.
The impact of corrosion on the properties of steel reinforcement in concrete structures was examined. An experimental investigation was carried out in order to gain better insight of the effect of corrosion on the mass loss, fatigue and hardness, of BSt500 s 12 and 8 mm diameter steel bars that were artificially corroded in a Sodium Chloride environment for different corrosion levels. The fatigue limit of the 12 mm steel was reduced by 20–40% and the mass loss was 1.5–2.9% for 15 and 30 days corrosion level, while the mass loss of the 8 mm steel was 1.2–32% for 10–90 days corrosion. The hardness of the 8 mm steel was reduced by 25–35% and 2–10% in the outer and inner layers of the specimens for 30 and 60 days corrosion respectively. Corrosion created considerable reduction in the fatigue strength and life of the steel bars due to drastic drop in the energy density, formation of pitting and notches along with destruction of the hardest outer layer of martensite.  相似文献   

20.
In this paper, FeSiBAlNiCox (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCox (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号