首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adenylate cyclase is a key enzyme that couples with both the stimulatory and inhibitory G proteins (Gs and Gi). The cyclase has been purified and shown to be a glycoprotein of molecular weight 115,000-180,000. Cloning of cDNAs for adenylate cyclase showed that the cyclase is a member of a large family consisting of a variety of subtypes of the enzyme. These subtypes show different responses to calmodulin and G protein beta gamma subunits, and their distributions in tissues and organs are also different. This suggests that each subtype is involved in a particular physiological function. The general structure of adenylate cyclase is composed of two cytoplasmic domains and two membrane-spanning domains, each of which contains 6 transmembrane spans (12 spans in a molecule). The amino acid sequence of each cytoplasmic domain, which is thought to contain a nucleotide (ATP) binding site, is well-conserved among the various subtypes. This review also focuses on the regulation of adenylate cyclase activity by G protein subunits, particularly on several models for adenylate cyclase inhibition by Gi. As one of these mechanisms, direct inhibition of adenylate cyclase by the beta gamma subunits recently demonstrated by us will be discussed.  相似文献   

3.
The exoenzyme S regulon is a set of coordinately regulated virulence genes of Pseudomonas aeruginosa. Proteins encoded by the regulon include a type III secretion and translocation apparatus, regulators of gene expression, and effector proteins. The effector proteins include two enzymes with ADP-ribosyltransferase activity (ExoS and ExoT) and an acute cytotoxin (ExoU). In this study, we identified ExoY as a fourth effector protein of the regulon. ExoY is homologous to the extracellular adenylate cyclases of Bordetella pertussis (CyaA) and Bacillus anthracis (EF). The homology among the three adenylate cyclases is limited to two short regions, one of which possesses an ATP-binding motif. In assays for adenylate cyclase activity, recombinant ExoY (rExoY) catalyzed the formation of cAMP with a specific activity similar to the basal activity of CyaA. In contrast to CyaA and EF, rExoY activity was not stimulated or activated by calmodulin. A 500-fold stimulation of activity was detected following the addition of a cytosolic extract from Chinese hamster ovary (CHO) cells. These results indicate that a eukaryotic factor, distinct from calmodulin, enhances rExoY catalysis. Site-directed mutagenesis of residues within the putative active site of ExoY abolished adenylate cyclase activity. Infection of CHO cells with ExoY-producing strains of P. aeruginosa resulted in the intracellular accumulation of cAMP. cAMP accumulation within CHO cells depended on an intact type III translocation apparatus, demonstrating that ExoY is directly translocated into the eukaryotic cytosol.  相似文献   

4.
We have investigated the response of adenylate cyclase to GTP and to dopamine (DA) in striatal membranes of rats treated for 3 weeks with chlorpromazine or haloperidol, and further measured the level of Gi (an inhibitory GTP-binding protein) or Go (a similar GTP-binding protein of unknown function) in 3 areas (cerebral cortex, striatum and hippocampus) utilizing pertussis toxin-catalyzed ADP ribosylation. In saline-treated control membranes, GTP exerted a biphasic effect on basal and DA-stimulated enzyme activity--peak levels of stimulation by DA plus GTP were observed at 1 microM GTP. Conversely, dopaminergic inhibitory effects at 10-100 microM GTP were completely attenuated in chlorpromazine or haloperidol-treated membranes. D2 inhibition of adenylate cyclase by the selective D2 agonist PPHT was also attenuated due to these neuroleptic treatments, while an increase in D2 receptor binding was observed. The pertussis toxin ADP-ribosylation of G-proteins (Gi/Go) did not differ significantly in any area. This indicates that long-term neuroleptic treatments increased D2 receptor binding, but attenuated D2 inhibition of adenylate cyclase, and exercised no influence on pertussis toxin ADP-ribosylation.  相似文献   

5.
In chick pineal cell culture, stimulation of adenylate cyclase with the diterpene forskolin was greater during the subjective night than during the subjective day. This rhythm of cyclic AMP (cAMP) stimulation mimicked the rhythm of unstimulated cAMP measured previously during LD cycles from flow-through culture. Direct measurement of adenylate cyclase activity in permeabilized cells revealed an adenylate cyclase activity activated by Ca2+/calmodulin during the night but not during the day. However, this difference in adenylate cyclase activity at two times of the circadian cycle is apparent only when permeabilized cells were prewashed with buffer containing GTE When cAMP was measured from flow-through cultures maintained in continuous darkness to determine whether a circadian clock may regulate cAMP, a low-amplitude rhythm was measured. The circadian rhythm of cAMP was similar to the cAMP rhythm previously measured on LD cycles except that the rhythm in darkness had a lower amplitude. Similar to the suppression of melatonin, cAMP was suppressed by light presented during the middle of the night. LD differences in nocturnal cAMP levels were abolished with dipyridamole, an inhibitor of cyclic GMP (cGMP) phosphodiesterase. These results suggest that the rhythm of cAMP in chick pineal cells involves the stimulation of adenylate cyclase by Ca2+/calmodulin during the night and a GTP-dependent suppression of adenylate cyclase activity during the day. The photic suppression of cAMP at night involves the activation of a dipyridamole-sensitive, cGMP phosphodiesterase.  相似文献   

6.
Amylin inhibits glucose-induced insulin secretion in the rat pancreas. To study the mechanism by which amylin acts on the B-cell, we have investigated, in the perfused rat pancreas, the effect of synthetic rat amylin (75 pM) on insulin release elicited by secretagogues acting on the B-cell via the adenylate cyclase/cAMP system, i.e., glucagon (10 nM), gastric inhibitory polypeptide (GIP, 1 nM), forskolin (1 microM) and isobutylmethylxanthine (IBMX, 75 microM). In addition, we examined the effect of amylin on GIP-induced insulin release in pancreata from rats pretreated with pertussis toxin, an agent which inactivates certain Gi proteins coupled to adenylate cyclase. Amylin inhibited the insulin response to glucagon (approx. 70%), GIP (approx. 90%), IBMX (approx. 75%) as well as the early phase of forskolin-induced insulin output (approx. 74%). However, amylin failed to modify GIP-induced insulin release in pancreata obtained from pertussis toxin pretreated rats. These results would indicate that the inhibitory effect of amylin on insulin secretion could be, at least in part, attributed to its interfering with the adenylate cyclase/cAMP system. Furthermore, prevention of the inhibitory effect of amylin on GIP-induced insulin output by pertussis toxin pretreatment, supports the concept that amylin can inhibit insulin release via a pertussis toxin-sensitive Gi protein coupled to the adenylate cyclase system.  相似文献   

7.
The addition of nitric oxide (NO), in the form of either donor compounds or nitric oxide gas, inhibits hormone-stimulated cAMP accumulation in N18TG2 cells. Hormone receptors and Gs are not targets of NO because forskolin-stimulated cAMP accumulation is also inhibited. The inhibitory effect of NO is not altered by pretreatment of cells with pertussis toxin, indicating that Gi is not mediating the effect of NO. cAMP accumulation in these cells is not altered by cell incubation with Ca++ ionophore or calmidazolium, indicating that calmodulin is not the target for NO. Experiments also rule out changes in phosphodiesterase or cGMP as mediators of the effect of NO. Cell incubation with superoxide dismutase in the presence or absence of catalase indicate that nitric oxide is the reactive species. The inhibitory action of nitric oxide is readily reversed, allowing full recovery of hormone and forskolin stimulation within 20 min of incubation in the absence of nitric oxide. The sum of the data indicate that NO targets either the adenylyl cyclase itself, or a regulatory component distinct from G proteins or calmodulin, to inhibit activation of the enzyme.  相似文献   

8.
9.
In this study we report that preincubation of Dictyostelium discoideum membrane-bound adenylate cyclase with ATP over the concentration range 0.5 to 100 mM results in a loss of catalytic activity and that this effect persists even after removal of ATP. An analysis of the time course of this effect shows that, at 25 mM ATP, a 5- to 10-min preincubation results in 50% loss of activity. Additional studies on this effect showed that anhydride bond cleavage of ATP occurs during the preincubation. However, loss of catalytic activity is not porduced by ADP, AMP, cAMP, adenosine, pyrophosphate, or phosphate either separately or in pairs. Further, using the structural analogs adenosine 5'-(alpha, beta-methylene)triphosphate and adenyl-5'-yl imidodiphosphonate, we show that there is a direct correlation between alpha-beta-phosphoanhydride bond cleavage and the loss of catalytic activity. These results can be interpreted in terms of two classes of reaction mechanisms: either those involving covalent modifications or those involving a ligand-induced slow conversion of the adenylate cyclase from an active to an inactive form. Additional studies show that the addition of AMP to the reaction mixture, as well as removal of the membrane-bound 5'-nucleotidase activity, can prevent the loss of cyclase activity. These results suggest not only that adenylate cyclase activity is related to the AMP:ATP ratio but that the cyclase activity can be modified by the level of 5'-nucleotidase activity. Studies on the duration of the loss of activity produced by ATP show that following removal of ATP and additional incubation, a gradual recovery of cyclase activity is observed. This result suggests that under appropriate conditions the cyclase inactivation by ATP is reversible.  相似文献   

10.
The cloned human serotonin 1D (5-HT1D) receptor has been shown to inhibit adenylate cyclase while the corresponding cloned dog receptor has been characterized by its enhancement of cAMP accumulation. To resolve this apparent discrepancy, the human 5-HT1D receptor has been cloned and expressed in Chinese hamster ovary (CHO) cells and the corresponding dog receptor expressed in mutant Y1 adrenal (Y1 Kin-8) cells. It is shown that both receptors when activated by sumatriptan depress forskolin induced adenosine 3'5'-cyclic monophosphate (cAMP) accumulation by a pertussis toxin sensitive mechanism, presumably involving Gi (the adenylate cyclase inhibitory GTP transducing protein). In the absence of forskolin, the dog receptor enhances cAMP accumulation, thus activating Gs (the adenylate cyclase stimulatory GTP transducing protein). When its overriding action on Gi is blocked by pertussis toxin pretreatment, the human receptor also enhances cAMP accumulation. Thus both 5-HT1D receptors activate markedly Gi and to a lesser extent Gs and can exert opposite effects on the same effector system, adenylate cyclase.  相似文献   

11.
A highly effective technology for obtaining a protective antigenic complex, including the main Bordetella pertussis protective antigens (pertussis toxin, filamentous hemagglutinin, agglutinogens, pertactin and adenylate cyclase) and isolated from the supernatant of B. pertussis cultivation medium, has been developed. A new method for the detoxication of antigenic complex which more available to preserve the protective property was suggested. Experimental batches of monovaccine and adsorbed DPT vaccine with the acellular pertussis component, possessing high protective activity and low histamine-sensitizing properties, have been obtained. The stability of protective properties both in liquid and lyophilized acellular pertussis preparations has been noted.  相似文献   

12.
The 436-amino acid protein enolase 1 from yeast was degraded in vitro by purified wild-type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at different times revealed a processive degradation mechanism and a length distribution of fragments ranging from 3 to 25 amino acids with an average length of 7 to 8 amino acids. Surprisingly, the average fragment length was very similar between wild-type and mutant 20S proteasomes with reduced numbers of active sites. This implies that the fragment length is not influenced by the distance between the active sites, as previously postulated. A detailed analysis of the cleavages also allowed the identification of certain amino acid characteristics in positions flanking the cleavage site that guide the selection of the P1 residues by the three active beta subunits. Because yeast and mammalian proteasomes are highly homologous, similar cleavage motifs might be used by mammalian proteasomes. Therefore, our data provide a basis for predicting proteasomal degradation products from which peptides are sampled by major histocompatibility complex class I molecules for presentation to cytotoxic T cells.  相似文献   

13.
Human parathyroid hormone (hPTH) is involved in the regulation of the calcium level in blood. This hormone function is located in the NH2-terminal 34 amino acids of the 84-amino acid peptide hormone and is transduced via the adenylate cyclase and the phosphatidylinositol signaling pathways. It is well known that truncation of the two NH2-terminal amino acids of the hormone leads to complete loss of in vivo normocalcemic function. To correlate loss of calcium level regulatory activity after stepwise NH2-terminal truncation and solution structure, we studied the conformations of fragments hPTH-(2-37), hPTH-(3-37), and hPTH-(4-37) in comparison to hPTH-(1-37) in aqueous buffer solution under near physiological conditions by circular dichroism spectroscopy, two-dimensional nuclear magnetic resonance spectroscopy, and restrained molecular dynamics calculations. All peptides show helical structures and hydrophobic interactions between Leu-15 and Trp-23 that lead to a defined loop region from His-14 to Ser-17. A COOH-terminal helix from Met-18 to at least Leu-28 was found for all peptides. The helical structure in the NH2-terminal part of the peptides was lost in parallel with the NH2-terminal truncation and can be correlated with the loss of calcium regulatory activity.  相似文献   

14.
The zymogen of bacterial transglutaminase was found during cultivation of Streptoverticillium mobaraense (DSMZ strain) using rabbit antibodies raised against the active enzyme. Ion-exchange chromatography at pH 5.0 yielded a highly purified pro-enzyme. Structure information was obtained by means of Edman degradation and analysis of PCR amplified nucleotide fragments. The data revealed an excess of negatively charged amino acids in the pro-region resulting in a decreased isoelectric point of the zymogen. Additionally, the new sequence gave rise to some modifications to the previously published hypothetical structure of prepro-transglutaminase derived from genomic DNA [Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsuura, A., Takagi, H., Motoki, M. & Takeuchi, K. (1994) Biosci. Biotechnol. Biochem. 58, 82-87]. Inactive transglutaminase, which carries an activation peptide of 45 amino acids, has a calculated molecular mass of 42445 Da. Its pro-region provides for both suppression of activity and increased thermostability. Furthermore, it could be shown that the micro-organism produces a protease which cleaves pro-transglutaminase at the C-side of Pro45. Rapid transformation of the mature enzyme also occurs by addition of other proteases. During conversion, 43 and 41 amino acid peptides are released by bovine trypsin and dispase from Bacillus polymyxa, respectively. The detection of endogenous substrates in the murein layer makes discussion of the physiological role of bacterial transglutaminases necessary.  相似文献   

15.
The type I adenylyl cyclase is directly stimulated by Ca2+ and calmodulin in vitro, and the enzyme is also stimulated by increases in intracellular Ca2+ in vivo. Ca2+ stimulation of the enzyme in vivo may be due to direct interactions of the enzyme with Ca2+ and calmodulin or to an indirect mechanism involving stimulation of the enzyme by Ca(2+)-activated protein kinases. In this study, we have made several point mutations within the calmodulin binding domain to determine if the Ca2+ sensitivity of the enzyme can be modified by mutagenesis. The catalytic activities of the mutant enzymes were comparable to wild type type I adenylyl cyclase. Substitution of Cys-507 with Ser-507 did not have significant effects on the calmodulin or Ca2+ sensitivity of the enzyme. However, replacement of Lys-504 with Asp caused a 4-fold decrease in sensitivity to Ca2+. Ca2+ and calmodulin stimulation were abolished by substitution of Phe-503 with Arg-503. Stimulation of type I adenylyl cyclase activity in vivo by intracellular Ca2+ was also greatly diminished with the Arg-503 mutant indicating that Ca2+ stimulation of the enzyme in vivo is due primarily to direct interactions with calmodulin and Ca2+. These data demonstrate that the Ca2+ sensitivity of this enzyme can be modulated by point mutagenesis within the putative calmodulin binding domain and indicate that the enzyme can be directly regulated by Ca2+ and calmodulin in vivo.  相似文献   

16.
By site-directed mutagenesis, three cysteine residues (amino acids 402, 403, and 405) in the carboxyl terminus of human endothelinB (ETB) were identified as potential palmitoylation sites. Substitutions of all of the three cysteine residues with serine gave an unpalmitoylated mutant, C2S/C3S/C5S. When expressed in Chinese hamster ovary cells, C2S/C3S/C5S was localized on the cell surface, retained high affinities to ET-1 and ET-3, and was rapidly internalized when bound to the ligand. However, unlike the wild-type ETB, C2S/C3S/C5S transmitted neither an inhibitory effect on adenylate cyclase nor a stimulatory effect on phospholipase C, indicating a critical role of palmitoylation in the coupling with G proteins, regardless of the G protein subtypes. Truncation of the carboxyl terminus including Cys403/Cys405 gave a deletion mutant Delta403 that was palmitoylated on Cys402 and lacked the carboxyl terminus downstream to the palmitoylation site. Delta403 did transmit a stimulatory effect on phospholipase C via a pertussis toxin-insensitive G protein but it failed to transmit an inhibitory effect on adenylate cyclase. These results indicated a differential requirement for the carboxyl terminus downstream to the palmitoylation site in the coupling with G protein subtypes, i.e. it is required for the coupling with Gi but not for that with Gq.  相似文献   

17.
Current evidence suggests that parathyroid gland adenylate cyclase is involved in the control of parathyroid hormone (PTH) secretion. Thus, the altered control of PTH release in hyperparathyroidism may relate to altered adenylate cyclase activation. Therefore, we examined adenylate cyclase kinetics in membrane preparations from hyperfunctioning human parathyroid glands and normal human and bovine parathyroid tissues. There were no differences in the affinity for ATP between enzymes of normal and pathological tissue. However, the enzyme in 10 hyperfunctioning glands showed increased affinity for Mg++. The activation constant for Mg++ (KaMg) of adenylate cyclase in normal human glands was 10.6 +/- 2 mM, a value not different from that of normal bovine parathyroid tissue (9.5 +/- 1 mM). In contrast, the adenylate cyclase in membrane preparations from three of four hyperplastic and six of seven adenomatous human glands showed a markedly reduced KaMg, ranging from 0.85-1.64 mM and from 1.58-6.46 mM, respectively. In one adenoma and one hyperplastic gland, the Ka of the enzyme for Mg++ was close to normal. The addition of guanylylimidodiphosphate or GTP to the incubation mixture increased, in a dose-dependent manner, the apparent KaMg of the enzyme in the abnormal tissue toward normal, suggesting a defective nucleotide regulatory site in the adenylate cyclase of hyperparathyroid glands. In addition, the hyperparathyroid gland enzyme was less susceptible to inhibition by calcium, requiring 0.7-1 mM Ca++ for 50% inhibition, whereas comparable inhibition of the normal adenylate cyclase was seen at 0.22-0.28 mM Ca++. We conclude that the abnormal control of PTH secretion in hyperparathyroidism may be related, at least in part, to alterations in the characteristics of parathyroid gland adenylate cyclase.  相似文献   

18.
A cDNA clone encoding the membrane form of guanylyl cyclase was isolated from a Hemicentrotus pulcherrimus testis cDNA library and its nucleotide sequence was determined. The cDNA was 4123 bp long and an open reading frame predicted a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids which divides the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl-terminal, intracellular domain of 594 amino acids. Three potential N-linked glycosylation sites were present in the extracellular domain. Northern blot analysis of poly(A)+RNA from testes, ovaries, eggs and embryos at various developmental stages showed that the cDNA encoding guanylyl cyclase hybridized to a mRNA of 4.4 kb from the testes. We developed a large scale purification method of the phosphorylated (131 kDa) and dephosphorylated (128 kDa) forms of the membrane-bound guanylyl cyclase from H. pulcherrimus spermatozoa. The purified 131 kDa and 128 kDa forms of the guanylyl cyclase contained 26.0 +/- 1.3 and 4.3 +/- 0.7 moles of phosphate per mol protein (mean +/- S.D.; n = 6), respectively. The amino-terminal amino acids of both the 131 kDa and 128 kDa forms of the guanylyl cyclase could not be detected, suggesting that they were blocked.  相似文献   

19.
Previously characterized soluble guanylyl cyclases form alpha-beta heterodimers that can be activated by the gaseous messenger, nitric oxide. In mammals, four subunits have been cloned, named alpha1, alpha2, beta1, and beta2. We have identified a novel soluble guanylyl cyclase isoform from the nervous system of the insect Manduca sexta that we have named M. sexta guanylyl cyclase beta3 (MsGC-beta3). It is most closely related to the mammalian beta subunits but has several features that distinguish it from previously identified soluble cyclases. Most importantly, MsGC-beta3 does not need to form heterodimers to form an active enzyme because guanylyl cyclase activity can be measured when it is expressed alone in COS-7 cells. Moreover, this activity is only weakly enhanced in the presence of the nitric oxide donor, sodium nitroprusside. Several of the amino acids in rat beta1 subunits, previously identified as being important in heme binding or necessary for nitric oxide activation, are substituted with nonsimilar amino acids in MsGC-beta3. There are also an additional 315 amino acids C-terminal to the catalytic domain of MsGC-beta3 that have no sequence similarity to any known protein. Northern blot analysis shows that MsGC-beta3 is primarily expressed in the nervous system of Manduca.  相似文献   

20.
Reported here is the isolation and characterization of two antibacterial peptides synthesized in an ant Myrmecia gulosa in response to bacterial challenge. The peptides were purified by reversed-phase high performance liquid chromatography and characterized by peptide sequencing and mass spectrometry. Both peptides were formed from 16 amino acids, were rich in proline ( approximately 30%), and had N-acetylgalactosamine O-linked to a conserved threonine. The activity of a synthetic non-glycosylated isoform was markedly reduced demonstrating that glycosylation was necessary for maximum activity. The peptides were active only against growing Escherichia coli. They were inactive against stationary cells, Gram-positive bacteria, the yeast Candida albicans, two species of mammalian cells, and bovine pestivirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号