首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Mammalian semicarbazide-sensitive amine oxidase (SSAO) enzymes have been classified as EC 1.4.3.6 [amine:oxygen oxidoreductase (deaminating)(copper-containing)]. However, both the identity of the quinone cofactor and the presence of copper remain unconfirmed, and SSAO has proved impossible to purify to homogeneity in sufficient yield to permit cofactor identification. To circumvent this problem, we have partially purified SSAO enzymes from bovine and porcine aortae and have established, with a redox-cycling assay, that no other quinoproteins were present in enzyme preparations. Enzymes were then derivatized with (p-nitrophenyl)hydrazine (p-NPH), which forms a covalent yellow complex with the quinone cofactor. Visible absorbance spectra of derivatized bovine and porcine enzymes (respective lambdamax values 456 and 476 nm at neutral pH, shifting to 580 and 584 nm in 2 M KOH) were consistent with the presence of (2,4,5-trihydroxyphenyl)alanine quinone (TPQ) as cofactor. Resonance Raman spectra were essentially identical to that for pea seedling amine oxidase, a known TPQ-containing enzyme. Extensive digestion of SSAO enzymes, and of porcine kidney diamine oxidase, with pronase E yielded species with identical chromophoric properties characteristic of the dipeptide, TPQ(p-NPH)-Asp. Thermolytic digestion of porcine SSAO gave two cofactor-containing peptides that contained a TPQ consensus sequence, Asn-X-Asp-Tyr-Tyr, where X is a blank cycle corresponding to TPQ. N-terminal sequencing of whole enzymes revealed a membrane-spanning region typical of an extracellular type II glycoprotein. These results confirm the presence of TPQ in mammalian membrane-bound SSAO ectoenzymes.  相似文献   

2.
The previous characterization of an abundant population of non-adrenergic imidazoline-I2 binding sites in adipocytes and the recent demonstration of the interplay between these binding sites and amine oxidases led us to analyze the amine oxidase activity in membranes from isolated rat adipocytes. Adipocyte membranes had substantial levels of semicarbazide-sensitive amine oxidase (SSAO). SSAO activity and immunoreactive SSAO protein were maximal in plasma membranes, and they were also detectable in intracellular membranes. Vesicle immunoisolation analysis indicated that GLUT4-containing vesicles from rat adipocytes contain substantial levels of SSAO activity and immunoreactive SSAO protein. Immunotitration of intracellular GLUT4 vesicles indicated that GLUT4 and SSAO colocalize in an endosomal compartment in rat adipocytes. SSAO activity was also found in GLUT4 vesicles from 3T3-L1 adipocytes and rat skeletal muscle. Benzylamine, a substrate of SSAO activity, caused a marked stimulation of glucose transport in isolated rat adipocytes in the presence of very low vanadate concentrations that by themselves were ineffective in exerting insulin-like effects. This synergistic effect of benzylamine and vanadate on glucose transport was totally abolished in the presence of semicarbazide, a specific inhibitor of SSAO. Subcellular membrane fractionation revealed that the combination of benzylamine and vanadate caused a recruitment of GLUT4 to the plasma membrane of adipose cells. The stimulatory effects of benzylamine and vanadate on glucose transport were blocked by catalase, suggesting that hydrogen peroxide production coupled to SSAO activity plays a crucial regulatory role. Based on these results we propose that SSAO activity might contribute through hydrogen peroxide production to the in vivo regulation of GLUT4 trafficking in adipose cells.  相似文献   

3.
In the search for novel nuclear binding proteins, two bands from a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel were analyzed and each was found to contain a number of proteins that subsequently were identified by tandem mass spectrometry (MS/MS) on a quadrupole ion trap instrument. The bands were digested with trypsin in situ on a polyvinylidene difluoride (PVDF) membrane following electroblot transfer. Analysis of a 2.5% aliquot of each peptide mixture by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) followed by an initial database search with the peptide masses failed to identify the proteins. The peptides were separated by reversed-phase capillary high performance liquid chromatography (HPLC) in anticipation of subsequent Edman degradation, but mass analysis of the chromatographic fractions by MALDI-MS revealed multiple, coeluting peptides that precluded this approach. Selected fractions were analyzed by capillary HPLC-electrospray ionization-ion trap mass spectrometry. Tandem mass spectrometry provided significant fragmentation from which full or partial sequence was deduced for a number of peptides. Two stages of fragmentation (MS3) were used in one case to determine additional sequence. Database searches, each using a single peptide mass plus partial sequence, identified four proteins from a single electrophoretic band at 45 kDa, and four proteins from a second band at 60 kDa. Many of these proteins were derived from human keratin. The protein identifications were corroborated by the presence of multiple matching peptide masses in the MALDI-MS spectra. In addition, a novel sequence, not found in protein or DNA databases, was determined by interpretation of the MS/MS data. These results demonstrate the power of the quadrupole ion trap for the identification of multiple proteins in a mixture, and for de novo determination of peptide sequence. Reanalysis of the fragmentation data with a modified database searching algorithm showed that the same sets of proteins were identified from a limited number of fragment ion masses, in the absence of mass spectral interpretation or amino acid sequence. The implications for protein identification solely from fragment ion masses are discussed, including advantages for low signal levels, for a reduction of the necessary interpretation expertise, and for increased speed.  相似文献   

4.
Nonadrenergic imidazoline I2-binding sites colocalize with monoamine oxidase (MAO) in various tissues. As white adipocytes from various species have been reported to be very rich in I2-sites, the authors consider whether these cells show a substantial MAO activity and explore its functional role. Oxidation of [14C]tyramine by rat adipocyte membranes was dependent on both MAO and semicarbazide-sensitive amine oxidase (SSAO). Tyramine oxidation was identical in membranes and in intact adipocytes (Vmax: 11-12 nmol/min/mg protein). A similar effect of MAO and SSAO inhibitors was obtained in both the intact cells and the membranes: half of the activity was sensitive to semicarbazide and the other half more easily inhibited by MAO-A than by MAO-B inhibitors. As the reaction catalyzed by amine oxidases generates H2O2, which mimicks certain insulin effects in adipocytes, we tested whether tyramine oxidation influences glucose transport in adipocytes. One mM tyramine weakly stimulated glucose transport. A clear potentiation of tyramine effect occurred in the presence of 0.1 mM vanadate, ineffective by itself, reaching half-maximal insulin stimulation. This stimulation was sensitive to MAO and SSAO inhibitors and to catalase. The 5-fold activation of glucose transport was accompanied by translocation of GLUT4 transporters to the plasma membrane. This shows that tyramine is readily oxidized by adipocytes and potentiates the effects of vanadium on glucose transport through release of hydrogen peroxide. The role of the amine oxidases, which are highly expressed in adipocytes, allows them to be considered as more than mere scavengers of circulating amines.  相似文献   

5.
Following administration of the anticancer agent, procarbazine, or one of its metabolites, monomethylhydrazine, to rats, activities of monoamine oxidases A and B (MAO A and MAO B) and of semicarbazide-sensitive amine oxidase (SSAO) were measured ex-vivo. Both compounds were found to be potent inhibitors of SSAO in tissue homogenates, exhibiting ID50 values in most tissues of approximately 8 mg kg-1 (procarbazine) and 0.08 mg kg-1 (monomethylhydrazine). Concurrent dose-dependent inhibition of MAO activities did not occur. However, in liver, potentiation of MAO B activity, to 140% of that in controls, was apparent following monomethyl-hydrazine and this effect was independent of the drug dose. Both compounds produced a dose-dependent potentiation of MAO A in brown adipose tissue, the elevation being more pronounced following monomethylhydrazine, with activity rising to 350% of that in control homogenates. In a parallel in-vitro study, monomethylhydrazine was without effect on MAO A in brown adipose tissue homogenates. By perfusing the SSAO substrate, benzylamine, through the isolated mesenteric arterial bed of the rat, it was found that pretreatment of animals with procarbazine or monomethylhydrazine reduced metabolism of this amine by a similar degree as had been determined ex-vivo in blood vessel homogenates. The results presented suggest that these compounds would be suitable for use as selective inhibitors in pharmacological examinations of SSAO function in isolated tissues and organs.  相似文献   

6.
The activity of semicarbazide-sensitive amine oxidase (SSAO) has been reported to be elevated in blood from diabetic patients. It has been suggested that the enzyme is involved in the development of complications such as retinopathies, nephropathies and neuropathies, which are associated with advanced diabetes, possibly by the formation of toxic metabolites. Under the influence of SSAO, methylamine is deaminated to formaldehyde which is known to react with various macromolecules. It has therefore been proposed that specific inhibition of SSAO could be of therapeutic value for treatment of diabetic patients. The present results provide evidence that treatment with an SSAO inhibitor potently reduces the levels of irreversible adducts. In this study, 14C-methylamine was given intraperitoneally to NMRI mice, and the tissue distribution of irreversibly bound methylamine metabolites was estimated by an autoradiographic method. Such radioactive residues occurred in high concentrations in the intestinal wall, brown adipose tissue, spleen and bone marrow. By inhibiting SSAO irreversibly with hydralazine before giving 14C-methylamine to the mice, it was possible to determine the resynthesis rate of SSAO in different tissues. A complete recovery of SSAO activity was seen in the intestinal wall after 6 days, whereas only about 60% was recovered in adipose tissue after 14 days. This suggests that factors controlling the synthesis of SSAO differ in these tissues, or that these tissues express different forms of enzymes.  相似文献   

7.
1. Semicarbazide-sensitive amine oxidase is a common name for a group of heterogeneous amine oxidases which are present in various mammalian tissues, especially in vascular smooth muscle cells, cartilage and adipose tissue, but also in plasma. 2. Plasma semicarbazide-sensitive amine oxidase activity was elevated in a group of 104 patients with insulin-dependent diabetes mellitus compared with normal control subjects (555 +/- 172 versus 352 +/- 102 m-units/l, P < 0.0005). 3. Plasma semicarbazide-sensitive amine oxidase activity was higher in subgroups with either retinopathy or nephropathy or both [583 +/- 116 (n = 34), 581 +/- 229 (n = 10) and 646 +/- 249 m-units/l (n = 19), respectively] than in the subgroup without overt complications [486 +/- 129 m-units/l (n = 41), P < 0.005]. 4. Plasma semicarbazide-sensitive amine oxidase activity was positively correlated with plasma glycosylated haemoglobin (r = 0.40; P < 0.0001) and with log urinary albumin excretion (r = 0.26; P < 0.025). 5. The possibility that semicarbazide-sensitive amine oxidase, by its conversion of endogenous amines like methylamine and aminoacetone into cytotoxic aldehydes, plays a role in the development of microvascular complications in diabetes mellitus, needs further investigation.  相似文献   

8.
We noted rapid breakdown at 4 degrees and 20 degrees C of dopamine (DA) (but not of (nor)epinephrine and epinine) in pig plasma, but not in human plasma. The enzyme responsible appears to be a semicarbazide-sensitive amine oxidase (SSAO) because the breakdown can be inhibited by semicarbazide, but not by pargyline, clorgyline, EDTA, or (extra) glutathione. Among catecholamines tested, only DA and 3,4-dihydroxybenzylamine (DHBA, the internal standard of most catecholamine assays using high-performance liquid chromatography (HPLC) with electrochemical detection) were good substrates for the pig plasma SSAO. At 37 degrees C, especially after prolonged storage, all catecholamines break down. This breakdown results from autoxidation since it can be prevented by addition of extra glutathione (but not by semicarbazide) for all catecholamines except DA and DHBA. Breakdown at 37 degrees C of these two compounds cannot be prevented by addition of extra glutathione or semicarbazide, but only by addition of both. For reliable measurements of DA concentrations in pig plasma, blood should be collected in tubes containing not only glutathione, but also semicarbazide. The possibility of similarly high plasma SSAO activity in other species should be investigated further.  相似文献   

9.
The effects of Gly-His-Lys-Cu and of three synthetic analogues (I, II and III) on wound healing of the guinea-pig dorsal skin, as well as on cultured fibroblasts, were examined. Gly-His-Lys-Cu and peptide I-Cu were tested in vivo. Hydroxyproline, proteins, DNA and semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, were measured, and the histology of the wounds was observed after staining with hematoxylin/eosin. Another set of wounds was treated in parallel with equivalent amounts of copper acetate. Gly-His-Lys-Cu and the analogues caused a decrease of the activity of semicarbazide-sensitive amine oxidase, with a high affinity for benzylamine, 4-8 days after surgery, followed by an increase on day 11 that was higher than in the control group. No significant difference was found between the two peptides. A slower reorganization of the skin and a delayed activation of fibroblasts are the main effects observed with these peptides-Cu complexes. Preliminary studies on cultured fibroblasts were monitored to see whether these peptides had a direct effect on fibroblasts. The products studied at a concentration of 10(-7) M, decreased cell reproduction and increased collagen expression.  相似文献   

10.
Although mass spectrometric peptide mapping has become an established technique for the rapid identification of proteins isolated by polyacrylamide gel electrophoresis (PAGE), the results of the identification procedure can sometimes be ambiguous. Such ambiguities become increasingly prevalent for proteins isolated as mixtures or when only very small amounts of the proteins are isolated. The quality of the identification procedure can be improved by increasing the number of peptides that are extracted from the gel. Here we show that cysteine alkylation is required to ensure maximal coverage in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mapping of proteins isolated by PAGE. In the described procedure, alkylation was performed prior to electrophoresis to avoid the adventitious formation of acrylamide adducts during electrophoresis. In this way, homogeneous alkylation was obtained with three different alkylating reagents (4-vinylpyridine, iodoacetamide, acrylamide). Cysteine alkylation was also used as a tool for the identification of cysteine-containing peptides. Using a 1:1 mixture of unlabeled acrylamide and deuterium-labeled acrylamide ([2,3,3'-D3]acrylamide), the proteins of interest were alkylated prior to electrophoretic separation. Peptide mixtures produced by trypsin digestion of the resulting protein bands were analyzed by MALDI-TOF MS, and the cysteine content of the peptides was inferred from the isotopic distributions. The cysteine content information was readily obtained and used to improve the protein identification process.  相似文献   

11.
Methylamine is a constituent of cigarette smoke and the major end product of nicotine metabolism. Smoking or nicotine can induce the release of adrenaline, which is in turn deaminated by monoamine oxidase, also producing methylamine. We found that the urinary level of methylamine was significantly elevated following administration of nicotine (25 mg/Kg, i.p.). Semicarbazide-sensitive amine oxidase (SSAO) inhibitors further increased the excretion of methylamine induced by nicotine. Following administration of L-(-)-[N-methyl-3H]nicotine long-lasting irreversible radioactive adducts were detected in different mouse tissues and such adduct formation could be blocked by selective SSAO inhibitors. These adducts are probably cross-linked oligoprotein complexes cross-linked by formaldehyde. The findings support the idea that nicotine can enhance SSAO/methylamine-mediated increase of formaldehyde and oxidative stress and this could in part contribute the adverse effect of health associated with smoking.  相似文献   

12.
A method to directly identify proteins contained in mixtures by microcolumn reversed-phase liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) is studied. In this method, the mixture of proteins is digested with a proteolytic enzyme to produce a large collection of peptides. The complex peptide mixture is then separated on-line with a tandem mass spectrometer, acquiring large numbers of tandem mass spectra. The tandem mass spectra are then used to search a protein database to identify the proteins present. Results from standard protein mixtures show that proteins present in simple mixtures can be readily identified with a 30-fold difference in molar quantity, that the identifications are reproducible, and that proteins within the mixture can be identified at low femtomole levels. Based on these studies, methodology has been developed for direct LC/MS/MS analysis of proteins enriched by immunoaffinity precipitation, specific interaction with a protein-protein fusion product, and specific interaction with a macromolecular complex. The approach described in this article provides a rapid method for the direct identification of proteins in mixtures.  相似文献   

13.
Calcium-binding proteins (CaBPs) have been described as involved in the stimulus-secretion coupling mechanisms in secretory glands. CaBPs were revealed with 45Ca, after electrophoresis in SDS-PAGE and transference to Zeta probe membranes, in Duvernoy's or venom gland homogenates from three families of South American snakes: Viperidae (Bothrops jararaca and Crotalus durissus terrificus); Elapidae (Micrurus corallinus), and Colubridae (Phylodrias patagoniensis and Oxyrhopus trigeminus). A band with an estimated molecular weight of 12 KDa was found in all glands studied. Bands with 17, 28, and 67 KDa were found in all glands, except in O. trigeminus Duvernoy's gland. A 18 KDa band was found in Viperidae and Elapidae venom glands, and a 88 KDa band was observed only in Viperidae venom gland homogenates. Some of these CaBPs were identified by Western blotting or by immunohistochemistry, as parvalbumin (12 KDa) and calbindin (28 KDa). When the secretion of these glands were analyzed, CaBPs were detected only in B. jararaca venom, with bands of 14, 35, 42, and 72 KDa. The profile of CaBPs was not modified at different phases of the secretory cycle of the glands, as well as after isoproterenol treatment.  相似文献   

14.
Semicarbazide-sensitive amine oxidase (SSAO) is a copper-containing enzyme found in large amounts in blood plasma and in vascular smooth muscle. The catalytic activity of this enzyme is elevated in diabetes mellitus and some substrates, such as aminoacetone and methylamine also occur in increased amounts in this disease. After deamination by SSAO highly angiotoxic products are formed, methylglyoxal and formaldehyde, respectively. Moreover, hydrogen peroxide is also formed as a side-product. These products arising from SSAO-catalysed reactions may partially explain late-diabetic damages in the kidneys, eyes and peripheral nerves, as well as other cardiovascular disorders. It is therefore proposed that inhibition of SSAO may decrease the formation of these cytotoxic products and therefore prevent or slow the development of late-diabetic complications.  相似文献   

15.
Because UV irradiation of proteins can produce reactive oxygen species and exposure to UV light has been implicated in cataractogenesis, the sites of photooxidation of bovine alpha-crystallin, a major lens protein with molecular chaperone activity, were identified using tandem mass spectrometry (MS/MS). Bovine alpha-crystallin was irradiated with UV light (> 293 nm) for 1, 4 and 8 h, digested with trypsin and analyzed by matrix-assisted laser desorption ionization, time-of-flight mass spectrometry (MALDI) to identify the oxidized sequences. Tryptic peptides were purified by reverse-phase HPLC and oxidized peptides were sequenced by MS/MS to determine the sites of oxidation. Tryptophan fluorescence decreased exponentially with increasing time of UV exposure and peptides containing residues 1-11 of alpha A-crystallin and 1-11, 12-22 and 57-69 of alpha B-crystallin were determined to be oxidized by shifts of 16 D or multiples of 16 Da above the mass of the unmodified peptide. The MALDI analysis revealed single oxidation of all four sequences, which increased with increasing time of UV exposure and possible double oxidation of alpha B 12-22. The specific sites of photooxidation indicate that the N-terminal regions of alpha A- and alpha B-crystallin are exposed to an aqueous environment and are in the vicinity of tryptophan residues from neighboring subunits.  相似文献   

16.
A widely used procedure for site localization of covalent protein modifications involves proteolysis, partial chromatographic separation of the resulting complex mixture, and tandem mass spectrometry (MS/MS) to identify peptides whose molecular weight (Mr) has been increased appropriately by the modification. As found previously for MS of small molecules, this study shows that protein fragment identification can be greatly simplified by labeling the modification with stable isotopes. Further, the high resolution capabilities of Fourier transform MS make possible the direct identification of CH3/CD3-labeled peptides without chromatographic separation. Although separate Asp-N, Lys-C, and alpha-chymotrypsin digests of thiaminase I (42 kDa) yielded as many as 70 peptides, FTMS identification of the labeled peptide localized the modification site of a mechanism-based inhibitor to Arg101-Lys121, Asp90-Gly122, and Gly107-Tyr119, respectively. The measured mass difference values of the two labels agreed with that expected for CH3/CD3, 3.019 Da, with a standard deviation of 0.005 Da, providing persuasive identity verification. MS/MS fragmentation narrowed the site to Pro109-Phe118 and also caused loss of the derivative with a sulfur atom, uniquely identifying Cys113 as the thiaminase I active-site nucleophile among the 379 amino acids.  相似文献   

17.
The Authors studied the morphological, biochemical, physico-chemical and biological characteristics of Vibrio anguillarum cultured on different growth conditions, characterized by low osmolarity and high temperature (37 degrees). One culture was subcultured for several days in tryptone soya agar with 0.5% Nacl at 37 degrees C incubation until the cell morphology was stabilized. The low osmolarity, through an osmotic shock, induced remarkable morphological modifications in the strain, evidenced by optic and electron microscopic studied; in addition SDS-PAGE analysis of saline extracts from the culture at 37 degrees C showed a specific new protein band of about 66KDa. This band was correlated with remarkable differences in outer membrane protein composition (OMPs) evidenced by Ag/Ah cross-reactions with rabbit hyperimmune sera against the modified and the reference V. anguillarum strains. Finally, the modified strain proved to be non pathogenic for trout and sea bass.  相似文献   

18.
A 2,048-bp nucleotide sequence containing a gene coding for an enzyme that degraded guar gum from Bacillus circulans K-1 was identified by polymerase chain reaction walking. This G-gene consisted of 1,551 nucleotides coding for a protein with Mr 55,242. The enzyme was overexpressed in Escherichia coli JM109 cells by the cloning the G-gene downstream of the lac Z promoter of pUC19. The molecular mass of recombinant G-enzyme estimated by SDS-PAGE was 62 KDa, close to that from strain K-1. Analysis of the recombinant enzyme showed GalNAc, Xyl, GlcNAc, Man, Glc, and Gal to account for 1.7%, 14.4%, 6.1%, 3.2%, 54.2%, and 10.4%, respectively, of the total monosaccharides. Polyacrylamide gel electrophoresis of this enzyme with staining gave a red band. The results suggested that the sugars accounted for the differences in the molecular masses. The recombinant enzyme had two kinds of N-terminal sequences, Thr-Met-Ile-Thr-Pro-Ser-Phe-Ala-Ser-Gly-Phe-Tyr-Val-Ile and Ile-Thr-Pro-Ser-Phe-Ala-Ser-Gly-Phe-Tyr-Val-Ile-Gly-Thr. Comparison of these sequences with the deduced N-terminal sequence coded for the G-gene showed that the amino acid, first Met, of the lac Z gene or the next residues Thr-Met in the recombinant enzyme were absent in the native enzyme. Methionines near and at the N-terminus of the mature protein probably were digested by methionine aminopeptidases of E. coli after translation. The properties of recombinant G-enzyme were similar to those of the enzyme from K-1 cells.  相似文献   

19.
Large-scale DNA sequencing is creating a sequence infrastructure of great benefit to protein biochemistry. Concurrent with the application of large-scale DNA sequencing to whole genome analysis, mass spectrometry has attained the capability to rapidly, and with remarkable sensitivity, determine weights and amino acid sequences of peptides. Computer algorithms have been developed to use the two different types of data generated by mass spectrometers to search sequence databases. When a protein is digested with a site-specific protease, the molecular weights of the resulting collection of peptides, the mass map or fingerprint, can be determined using mass spectrometry. The molecular weights of the set of peptides derived from the digestion of a protein can then be used to identify the protein. Several different approaches have been developed. Protein identification using peptide mass mapping is an effective technique when studying organisms with completed genomes. A second method is based on the use of data created by tandem mass spectrometers. Tandem mass spectra contain highly specific information in the fragmentation pattern as well as sequence information. This information has been used to search databases of translated protein sequences as well as nucleotide databases such as expressed sequence tag (EST) sequences. The ability to search nucleotide databases is an advantage when analyzing data obtained from organisms whose genomes are not yet completed, but a large amount of expressed gene sequence is available (e.g., human and mouse). Furthermore, a strength of using tandem mass spectra to search databases is the ability to identify proteins present in fairly complex mixtures.  相似文献   

20.
Complete and rapid peptide and glycopeptide mapping of a mouse monoclonal immunoglobulin (IgG2b) were carried out by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry (LC/ ESI IT-MS/MS). It was possible to obtain spectra of a minor glycopeptide at a quantity as low as 1.8 pmol. Reduced and carboxymethylated mouse antidansyl monoclonal IgG2b (RCM-IgG2b) was digested with lysyl-endopeptidase. Proteolytic peptides were subjected to capillary HPLC separation followed by analysis with an ion trap mass spectrometer. The complete amino acid sequence of the IgG2b was characterized by using LC/ ESI IT-MS/MS. The structures of 12 different types of O-linked oligosaccharides attached to Thr-221AH in the hinge region and those of three major types of N-linked oligosaccharides attached to Asn-297H have been characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号