首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal rats showed faster inhibitory learning about a light conditioned stimulus (CS) if it had previously been an inconsistent predictor of a tone CS than if it had been a consistent predictor of the tone. In contrast, the inhibitory learning of rats with ibotenic acid lesions of the amygdala central nucleus (CN) was unaffected by the prior predictive value of the light. These results support claims that the CN is critical to surprise-induced enhancement of attentional processing of CSs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
The present series of experiments aimed to pinpoint the source of nucleus accumbens core (AcbC) effects on delay discounting. Rats were trained with an impulsive choice procedure between an adjusting smaller sooner reward and a fixed larger later reward. The AcbC-lesioned rats produced appropriate choice behavior when the reward magnitude was equal. An increase in reward magnitude resulted in a failure to increase preference for the larger later reward in the AcbC-lesioned rats, whereas a decrease in the larger later reward duration resulted in normal alterations in choice behavior in AcbC-lesioned rats. Subsequent experiments with a peak timing (Experiments 2 and 3) and a behavioral contrast (Experiment 4) indicated that the AcbC-lesioned rats suffered from decreased incentive motivation during changes in reward magnitude (Experiments 2 and 4) and when expected rewards were omitted (Experiments 2 and 3), but displayed intact anticipatory timing of reward delays (Experiments 2 and 3). The results indicate that the nucleus accumbens core is critical for determining the incentive value of rewards, but does not participate in the timing of reward delays. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
The effects of superimposing operant reward and omission contingencies on 2 Pavlovian conditioned responses evoked by a visual conditioned stimulus paired with food were examined in rats with lesions of the amygdala central nucleus (CN). In sham-lesioned rats, the frequency of an orienting response, rearing, was increased by reward contingencies and decreased by omission contingencies, compared with yoked Pavlovian controls. In contrast, in CN-lesioned rats, rearing was not affected by either operant contingency and occurred at lower levels with Pavlovian procedures alone than in sham-lesioned rats. Nevertheless, CN-lesioned and sham-lesioned rats showed similar increases in the frequency of conditioned food-cup behavior with reward contingencies, similar decreases with omission contingencies, and similar levels of that response with Pavlovian procedures. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
In this study, the authors tested the hypothesis that the basolateral amygdala (BLA), orbitofrontal cortex (OFC), nucleus accumbens core (NA-core), and the extended hippocampus mediate different aspects of the development-maintenance of unique reward expectancies produced by the differential outcomes procedure (DOP). Rats were trained with either DOP or a nondifferential outcomes procedure (NOP) on a simple discrimination task. Fornix lesions did not affect either version of the task, demonstrating that the extended hippocampal system has no role in stimulus-outcome (S-O) associations. In contrast, in the DOP condition, BLA lesions impaired performance throughout training, OFC lesions impaired choice accuracy only in the later maintenance phase, and NA-core lesions resulted in enhanced learning. These results suggest that BLA and OFC are important for establishment (BLA) and behavioral maintenance (OFC) of S-O associations, whereas the NA-core is not needed and can in fact impede using multiple S-O associations. No impairments were observed in the NOP condition, demonstrating that these structures are not critical to stimulus-response learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an impaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS + significantly less often than controls, failing to discriminate between the CS + and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The basal forebrain cholinergic system is broadly implicated in the regulation of attention. Disruptions in the function of this system produce impairments in many attentional functions, including the performance of well-learned responses under increased attentional load and the surprise-induced enhancement of learning rate. Similarly, lesions of the amygdala central nucleus (CeA) have been found to impair attentional function in some circumstances. In the present article, the effects of lesions that disconnected CeA from the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) on performance are examined in a modified 5-choice serial reaction time (5CSRT) task, thought to assess selective or sustained attention. The lesions impaired performance under conditions of increased attentional load, suggesting that a circuit that includes CeA and SI/nBM regulates these aspects of attention. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Decreased oxytocin levels in the amygdalas of rat dams following chronic gestational cocaine exposure have been correlated with heightened maternal aggressive behavior. In this experiment, drug-naive dams were implanted with bilateral cannulas into the central nucleus of the amygdala (CNA) or control area and infused with 1,000 or 500 ng of an oxytocin antagonist (OTA) or buffer, 4 hr before testing. Behavior was compared among dams infused with OTA into target areas just outside the CNA and cocaine-treated dams (infused with buffer). Dams infused with 1,000 ng OTA attacked intruders significantly more often than buffer-infused dams. OTA did not affect other behaviors, suggesting that disruption of oxytocin activity in the CNA may be sufficient to selectively alter maternal aggressive behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
In the separated arms conditioned cue preference (CCP) task rats are trained by confining them in one arm of an eight-arm radial maze with food and in another arm on the opposite side of the maze with no food on alternate days. After two such trials, rats prefer the food-paired arm when allowed to move freely between the two arms, neither of which contains food. However, if the rats are preexposed to the maze by exploring it without food before training, no preference is observed and at least 4 training trials are required to produce a CCP, suggesting that unreinforced preexposure to the maze latently inhibits acquisition. If this interpretation is correct, preexposure should reduce the size of the preference acquired with both 2 and 4 training trials. In Experiment 1, this prediction was replicated for 2 training trials; however, with 4 training trials, eliminating preexposure also eliminated the CCP. A previous finding that basolateral amygdala lesions impair the CCP with preexposure and 4 training trials was replicated in Experiment 2, but similar lesions had no effect on the CCP in nonpreexposed rats given 2 training trials. In contrast, lesions of the central nucleus impaired the 2 training trial CCP but had no effect on the 4 training trial CCP. This double dissociation suggests that the BLA-mediated 4 training trial CCP may be due to learning about the reward features of the maze space, while the central-nucleus-mediated 2 training trial CCP may be due to a conditioned approach response. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

9.
There is considerable evidence that the basolateral complex of the amygdala (ABL) is involved in learning about the motivational value of otherwise neutral stimuli. The authors examined the role in this function of the ABL and one of its major efferent structures, the nucleus accumbens. Male Long-Evans rats received either sham, ipsilaterally. or contralaterally placed unilateral lesions of the ABL and accumbens and were trained in an appetitive Pavlovian second-order conditioning task. Sham-lesioned and ipsilaterally lesioned rats acquired the task normally, but contralaterally lesioned rats, in which the ABL and accumbens were functionally disconnected, failed to acquire second-order conditioned responses (although they did acquire second-order conditioned orienting responses). The results suggest that the ABL and accumbens are part of a system critical for processing information about learned motivational value. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In 2 T-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on (1) effortful choices in which rats could climb a barrier for a high reward or select a low reward with no effort and (2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

11.
Many associative learning theories assert that the predictive accuracy of events affects the allocation of attention to them. More reliable predictors of future events are usually more likely to control action based on past learning, but less reliable predictors are often more likely to capture attention when new information is acquired. Previous studies showed that a circuit including the amygdala central nucleus (CEA) and the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) is important for both sustained attention guiding action in a five-choice serial reaction time (5CSRT) task and for enhanced new learning about less predictive cues in a serial conditioning task. In this study, the authors found that lesions of the cholinergic afferents of the medial prefrontal cortex interfered with 5CSRT performance but not with surprise-induced enhancement of learning, whereas lesions of cholinergic afferents of posterior parietal cortex impaired the latter effects but did not affect 5CSRT performance. CEA lesions impaired performance in both tasks. These results are consistent with the view that CEA affects these distinct aspects of attention by influencing the activity of separate, specialized cortical regions via modulation of SI/nBM. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The current view of instrumental conditioning indicates that performance in the early stage of training is maintained by a representation of the outcome, as indexed by its sensitivity to changes in the value of the reward. In the present study, the authors tested the effects of a disconnection of the prelimbic cortex (PL) and the basolateral nucleus of the amygdale (BLA), using an asymmetric lesion procedure, to determine whether these structures interact sequentially as part of a corticolimbic system. In marked contrast to the effects of bilateral lesions of the PL or the BLA, which both altered rats' sensitivity to outcome devaluation, the disconnection of these 2 brain areas was without an effect on outcome devaluation. These results demonstrate that the PL and the BLA mediate different aspects of outcome representation in goal-directed responding. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
This study examined the effects of intense emotional learning on the sleep-wake state-specific electroencephalographic (EEG) activities of the basolateral (BLA) and central (CeA) nuclei of the amygdala. Rats were trained on a passive-avoidance learning (PAL) protocol that was followed by 6 hrs of undisturbed polygraphic recording and a PAL test. After PAL training, the total amount of REM sleep decreased; high-frequency EEG power decreased in the CeA during REM sleep and increased in the BLA during all sleep-wake stages. These results suggest that there is no homeostatic demand for REM sleep after intense emotional learning. However, the PAL-specific changes in the local EEG suggest that some form of memory processing may occur within the amygdala during REM sleep. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The acquisition of conditional freezing is abolished by N-methyl-D-aspartate (NMDA) receptor antagonism in the basolateral complex of the amygdala (BLA) during fear conditioning, suggesting that memory formation is prevented. The present study examined whether there is residual memory, or "savings," for fear conditioning in rats trained under amygdaloid NMDA receptor blockade. Rats infused with D,L-2-amino-5-phosphonovalerate (APV) into the BLA or central nucleus of the amygdala (CEA) during fear conditioning did not acquire either auditory or contextual fear conditioning. However, savings of conditional fear was exhibited by rats infused with APV into the CEA but not the BLA. These results suggest that both the BLA and CEA play a critical role in the acquisition of conditional fear but that the BLA is able to process and retain some aspects of aversive memories in the absence of the CEA. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The central nucleus (CE) of the amygdala has been gaining attention for its importance in the plasticity underlying conditioned emotional responding. Already known for its role in nictitating membrane response (NMR) reflex facilitation, the CE may also be involved in conditioning-specific reflex modification (CRM)--changes in the NMR to the unconditioned stimulus (US) when tested in the absence of the conditioned stimulus following classical conditioning. To examine the CE's role in acquisition and/or expression of CRM, the authors temporarily inactivated the CE of rabbits (Oryctolagus cuniculus) with muscimol during NMR conditioning and/or during US testing. Results show that CRM was abolished by inactivation during US testing but intact following inactivation during NMR conditioning, suggesting that the CE is involved in CRM expression. Also, inactivation during conditioning delayed the development of conditioned NMRs. These findings show that the CE may act as an output center for expression of emotional responding in one situation (CRM) but is involved in facilitating plasticity in another (NMR conditioning). The authors propose that analysis of CRM may be an important corollary to current models for the treatment of posttraumatic stress disorder. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
The authors examined whether glutamate release from the vagus nerve onto the nucleus of the solitary tract (NTS) is one mechanism by which the vagus influences memory and neural activity in limbic structures. Rats trained to drink from a spout were given a footshock (0.35 mA) on Day 5 after approaching the spout. Phosphate-buffered saline or 5.0, 50.0, or 100.0 nmol/0.5 μl glutamate was then infused into the NTS. Glutamate (5.0 or 50.0 nmol) significantly enhanced memory on the retention test. In Experiment 2, this effect was attenuated by blocking noradrenergic receptors in the amygdala with propranolol (0.3 μg/0.5 μl). Experiment 3 used in vivo microdialysis to determine whether footshock plus glutamate (50.0 nmol) alters noradrenergic output in the amygdala. These treatments caused a significant and long-lasting increase in amygdala noradrenergic concentrations. The results indicate that glutamate may be one transmitter that conveys the effects of vagal activation on brain systems that process memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Chemical stimulation of the inferior colliculus (IC) with semicarbazide--an inhibitor of the gamma aminobutyric acid synthesizing enzyme--functions as an unconditioned stimulus in the conditioned place aversion test (CPA), and electrolytic lesions of the basolateral amygdala (BLA) enhance the aversiveness of the IC stimulation. This study examined the effects of inactivation of the BLA with muscimol on the conditioned and unconditioned fear using semicarbazide injections into the IC of rats subjected to conditioned (CPA) or unconditioned (open field) fear tests. In both tests, the rats were injected with semicarbazide or saline into the IC and muscimol or saline into the BLA. Muscimol decreased the CPA and increased the unconditioned fear elicited by IC injections of semicarbazide. These findings indicate that distinct modulatory mechanisms in the BLA are recruited during the conditioned and unconditioned fear triggered by IC activation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The rewarding properties of centrally administered ethanol (EtOH) were examined using a conditioned place preference (CPP) test. Male rats subjected to bilateral intracerebroventricular (icv) infusions of EtOH (0-240 nmol) produced a dose-dependent preference for the drug-paired environment that was potentiated by concurrent intravenous (iv) administration of heroin (0.025 mg/kg). The role of mesolimbic dopamine (DA) pathways in the development of EtOH reward was then examined by challenging EtOH-treated rats with bilateral intra-accumbens shell applications of a DA receptor antagonist. Fluphenazine (10 or 50 μg/side), infused immediately prior to daily place conditioning trials, was found to reliably attenuate the development of CPPs produced by icv EtOH administration. When fluphenazine was administered into the nucleus accumbens shell prior to the final test trial only (i.e., in already conditioned rats), intra-accumbens shell DA receptor blockade was found to prevent the expression of CPPs produced by icv EtOH. In summary, rats form reliable learned preferences for EtOH-paired locations (CPPs) that are potentiated by iv heroin and whose acquisition and expression rely on intact DA functionality within the nucleus accumbens. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Two experiments demonstrated the existence of a strong population stereotype which affected the processing of verbal commands. In a choice RT task, Ss pressed the right- or left-hand key in response to the words "right" or "left" which were presented to the right or left ear. RT was significantly faster when the content of the command corresponded to the ear stimulated than when it did not, i.e., information processing was affected by a cue irrelevant to the task itself, the ear in which the command was heard. Removing S's uncertainty regarding the ear to be stimulated resulted in significantly faster RT, and reduced but did not eliminate the effect of the irrelevant directional cue. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
[Correction Notice: An erratum for this article was reported in Vol 121(6) of Behavioral Neuroscience (see record 2007-18058-034). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum.] The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号