首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
含二氮杂萘酮结构聚芳醚砜酮超滤膜的研制   总被引:8,自引:5,他引:3  
以新型耐高温特种工程塑料———含二氮杂萘酮结构聚芳醚砜酮(PPESK)为膜材料、N-甲基-2-吡咯烷酮为溶剂配制铸膜液,采用相转化法在平板刮膜机上制备PPESK超滤膜,考察了PPESK含量、PPESK的特性黏数、添加剂含量和膜厚度等对超滤膜性能的影响.在0.1MPa的操作压力下,所制得PPESK超滤膜的纯水通量可高达约148L/(m2·h),对聚乙二醇10000的截留率高于93%.  相似文献   

3.
文中以含醚键双二氮杂萘酮结构化合物4,4’-双(氧基(1,4-苯撑))-双二氮杂萘-1(2H)酮-二苯醚(OBDHPZ)为类双酚单体,与4,4’-二氟二苯砜(DFS)和2,6’-二氟苯腈(DFBN)进行高温溶液缩聚反应,通过调节聚合物分子主链中砜基和氰基等的含量,合成了一系列不同腈砜比的含醚键双二氮杂萘酮联苯结构聚芳醚腈砜树脂(PBPENS),其N-甲基吡咯烷酮(NMP)溶液在25℃的特性黏度为0.63~0.90 dL/g。通过红外光谱、核磁共振氢谱和广角X射线衍射仪表征了所合成聚芳醚腈砜的结构;通过差示扫描量热仪和热失重分析仪分析了该类聚芳醚腈砜的热性能,聚合物的玻璃化转变温度(Tg)在322~325℃,5%热失重温度(Td5%)在485~500℃。该类聚合物在常温时可溶解于NMP、N,N-二甲基乙酰胺(DMAc)、氯仿等极性非质子有机溶剂;采用溶液浇筑法制备了含醚键双二氮杂萘酮结构聚芳醚腈砜薄膜,薄膜的拉伸强度可以达到56~65 MPa。  相似文献   

4.
介绍了含二氮杂萘酮联苯结构聚芳醚砜酮、聚芳醚腈砜酮以及同时还含芳基均三嗪环结构聚芳醚三大系列新型高性能工程塑料的合成与性能及其在高性能树脂基复合材料、绝缘漆、漆包线、功能涂料以及耐高温功能膜等领域的研究进展。从分子结构设计出发,研制成功具有扭曲、非平面结构特点的含二氮杂萘酮联苯结构新型单体,进而与双卤单体经亲核取代逐步聚合反应合成了多系列含二氮杂萘酮联苯结构新型聚芳醚类高性能工程塑料,既耐高温又可溶解,解决了传统高性能工程塑料不能兼具耐高温可溶解的技术难题。其玻璃化转变温度达250~375℃,5%热失重起始温度均高于500℃;可溶解于N-甲基吡咯烷酮、N,N-二甲基乙酰胺以及氯仿等几种有机溶剂;综合性能优异,尤其是在高温下依然保持优异的综合性能;可多种方式加工,不仅可采用模压、挤出、注射等热成型加工,还可采用溶液方式加工应用;广泛应用于航空航天、核能、电子电气等高技术领域和国民经济众多行业部门。  相似文献   

5.
含二氮杂萘酮结构的新型共聚醚酮的合成及性能   总被引:5,自引:0,他引:5  
应用自制的新型类双酚单体4-(4-羟基苯基)-2,3-二氮杂萘酮(DHPZ)与对苯二酚(HQ)成功地合成了新型共聚醚酮树脂COPPEK/HQ,所得聚合物进行了性能表征,实验结果表明,此类聚合物较已经合成的新型杂环取代联苯型聚醚酮PPEK具有溶解性好,易于加工等特点,且耐温等级较高。  相似文献   

6.
7.
8.
含二氮杂萘酮联苯结构聚芳酯的合成和性能   总被引:1,自引:0,他引:1  
以新二酸4-[4-(4-羧基苯氧基)苯基]-2-(4-羧基苯基)二氮杂萘-1-酮(1)和4种商品二酚进行溶液缩聚反应,制备出一系列古杂萘联苯结构新型聚芳酯,其特性粘度在0.50-0.58 dL·g-1之间.以FT-IR.1H-NMR证明了聚合物的结构.该类聚芳醇的玻璃化转变温度在209-272℃之间,在N2气氛下10%的热失重温度在468-481℃之间.聚芳本具有无定型结构,可溶解于N-甲基吡咯烷酮(NMP),N,N-二甲基乙酰胺(DMAc),间甲酚,吡啶和氯仿(CHCls)中.扭曲和非共平面的结构存在使该系列聚芳酯既耐高温又具有良好的溶解性能.  相似文献   

9.
以4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(DHPZ)、4-(3-烯丙基-4-羟基苯基)-2,3-二氮杂萘-1-酮(allyl-DHPZ)和2,6-二氟苯腈(DFBN)为单体,采用芳香亲核取代法,通过改变单体的物质的量配比,合成了系列可溶解可交联的聚芳醚腈(PAENs)。通过核磁共振测试证明了所合成的单体以及聚合物的结构,凝胶渗透色谱仪测定了聚合物的相对分子质量(珚Mw为45130~58403),红外光谱和差示扫描量热仪分析了聚合物的热交联反应过程。所合成的聚芳醚腈在室温时可溶于氯仿、二甲基乙酰胺、二甲基甲酰胺和甲基吡咯烷酮等极性有机溶剂,交联后的聚合物不溶于任何有机溶剂(凝胶含量最高达到98.6%),具有良好的热稳定性能(1%热失重为450℃)。  相似文献   

10.
以氯苯、α-氯代萘、氯磺酸、二氯亚砜为原料,合成了4-氯-1-萘磺酰氯,经Frield-Craft磺酰基化反应,合成了含两个1,4-萘结构的4-氯-1-(4′-氯-1-萘磺酰基)萘(CCNSN)。CCNSN分别与双酚A、酚酞、对苯二酚及4-(4-羟基苯基)-2,3-二氮杂萘-1-酮经溶液亲核取代逐步聚合反应,合成了4种含1-(萘-1-磺酰基)萘结构的聚芳醚(Pa~Pd)。用NMR、FT-IR对单体和聚合物进行了表征,证明其结构正确;用DSC、TGA和WAXD等方法对聚合物的热性能及结晶性进行了表征,结果表明,聚合物的玻璃化转变温度在226℃~318℃之间,氮气环境下,5%热失重的起始温度均在450℃以上,说明具有良好的热稳定性;考察了聚合物的溶解性能,除Pc不溶于常见的有机溶剂外,Pa、Pb、Pd皆可溶于氯仿(CHCl3)、1,1,2,2-四氯乙烷(TCE)和N,N-二甲基乙酰胺(DMAC)、N-甲基吡咯烷酮(NMP)等非质子极性溶剂。  相似文献   

11.
甲基取代杂萘联苯型聚芳醚的合成、表征及性能   总被引:8,自引:0,他引:8  
以自制的新型甲基取代类双酚 4 - ( 3-甲基 - 4 -羟基苯基 ) - 2 - 3-二氮杂萘 - 1-酮 ( OM- HPPZ)为单体与4 ,4′-二氟二苯酮、4 ,4′-二氯二苯砜进行亲核缩聚反应 ,制得了一类新型甲基取代聚芳醚酮、聚芳醚砜及其共聚物聚芳醚砜酮树脂。在适宜的聚合条件下 ,获得了高分子量的聚合物 ,聚醚酮的特性粘度可达0 .70× 10 2 m L/ g;通过调节砜酮比例 ( S/ K)可获得不同分子量、不同玻璃化温度的共聚物 ( PPESK)。利用 DSC、TGA研究了聚合物的耐热性能 ,结果表明 ,新型聚芳醚玻璃化温度高 ( 2 5 2℃~ 2 90℃ ) ,耐热稳定性好 ( 5 %热失重温度高于 4 16℃ ) ,在氯仿、DMAc等极性有机溶剂中可溶解成膜 ,以 FT- IR和 1H-NMR研究了类双酚单体 OM- HPPZ和聚合物的结构 ,证明与设计结构完全一致  相似文献   

12.
新型杂环氯代聚芳醚的合成与性能   总被引:3,自引:0,他引:3  
以自制的新型氯代类双酚化合物4-(3-氯-4-羟基苯基)-2,3-二氮杂萘-1-酮(OC-HPPZ)为单体,分别与4,4/-二氟二苯酮、4,4/-二氯二苯砚和1,4-双-(4-氯代苯甲酰基)苯进行缩聚反应,合成了一类新型的具有较高分子质量的聚芳醚材料。利用FTIR、1H NMR等分析手段研究了类双酚化合物OC-HPPZ及其聚合物的结构;采用差示扫描量热仪(DSC)、热重分析仪(TGA)研究了聚合物的耐热性能,结果表明,新型聚芳醚砜、聚芳醚酮和聚芳醚酮酮具有优异的耐热性能和热稳定性能,其玻璃化转变温度为234~287℃,在氮气氛中5%热失重温度均高于420℃,新型氯代聚芳醚在氯仿、N、N-二甲基乙酰胺等极性有机溶剂中可溶解并浇铸得到透明、韧性的薄膜。  相似文献   

13.
用邻甲酚或间甲酚与4,4‘-二氯二苯砜合成2,2‘-二甲基-4,4‘-二苯氧基二苯砜(o-CH3-DPODPS)或3,3‘-二甲基-4,4‘-二苯氧基二苯砜(m-CH3-DPODPS),然后与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)进行缩聚,得到一类新型含甲基侧基的聚芳醚砜醚酮酮聚合物.用FT-IR,^1H-NMR,DSC,TGA,X-ray等方法对单体和聚合物进行表征.结果表明,这种可溶性的非晶态聚合物具有较高的玻璃化转变温度Tg和较好的耐热性能.  相似文献   

14.
综述了各类多环聚芳醚酮的研究进展,指出其存在的问题,就其发展前景提出了一些思路。  相似文献   

15.
以对二溴苯和苯酚为原料合成高纯度1,4-二苯氧基苯(DPB),以1.2-二氯乙烷(DCE)为溶剂,无水三氯化铝/N、N-二甲基甲酰胺(DMF)为复合催化溶剂体系,与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)进行溶液低温缩聚,得到一类聚芳醚醚酮酮(PEEKK)聚合物.用FT-IR, 1H-NMR,DSC,TGA,WAXD等分析技术对聚合物进行表征.结果表明,该聚合物有较好的结晶性和良好的热稳定性。  相似文献   

16.
含二氮杂萘结构聚醚砜酮酮的合成及表征   总被引:4,自引:0,他引:4  
以1,4-二(4-氯代苯甲酰基)苯及4,4'-二氯二苯砜单体与4-(4-羟基苯基)-2,3-二 氮杂萘-1-酮单体经来核取代反应,合成了一系列分子主链中含有C-N键的杂环聚醚砜酮酮三元共聚物 PPESKK,用 FT-IR、1H-NMR、DSC、 TGA、 X射线衍射等方法对共聚物进行了表征,结 果表明,PPESKK为具有高热稳定性的可溶性无规共聚物,巨随着砜基比例的增加,共聚物玻璃化温度 逐渐升高  相似文献   

17.
以2,2’,6,6‘-四甲基-4,4’-二摹氧基二苯砜(o-M2DPODPS)为单体,与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)通过低温亲电溶液缩聚,合成了两种新型含双邻甲基取代结构的聚芳醚砜醚酮酮。用DSC、IR、WAXD、TGA、^1H-NMR等方法对聚合物进行了表征分析,考察了聚合物的溶解性能。结果表明,两种聚合物均为无定型聚集态,具有很高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性能。  相似文献   

18.
聚芳醚醚酮的热分解   总被引:1,自引:0,他引:1  
用高分辩裂解色谱-质谱法研究聚芳醚醚酮的热分解,分离和鉴定了热分解产物,考察其组成分布及温度依赖性。结合热重数据和热分解动力学模型分析,进而讨论了聚芳醚醚酮的热分解机理。  相似文献   

19.
在无水A lC l3及DM F存在下,将4,4′-二(4-氯甲酰苯氧基)二苯砜(SPC l)、4,4′-二(3-氯甲酰苯氧基)二苯砜(SM C l)分别与2-甲基二苯醚(o-M DPE)和3-甲基二苯醚(m-M DPE)在1,2-二氯乙烷中进行低温溶液缩聚,合成了4种新型可溶性的甲基取代聚芳醚酮醚砜醚酮(M-PEKESEK)。DSC,TG,FT-IR及W AXD等测试表明,4种聚合物均为无定型结构,其玻璃化转变温度(Tg)介于157℃~167℃,在氮气气氛中5%的热失重温度(Td)均在465℃以上,易溶于氯仿和DM F、DM SO等强极性非质子有机溶剂中。  相似文献   

20.
含稠杂环结构聚芳醚酮的合成与表征   总被引:4,自引:0,他引:4  
以无水AlCl3/ClCH2CH2Cl/DMF为催化剂/溶剂体系,将(夹)二氧蒽(ODP)和吩噻恶(OSP)分别与对苯二甲酰氯、间苯二甲酰氯及2,5-二氯对苯二甲酰氯进行亲电缩聚,合成了几种主链含稠杂环结构的聚芳醚酮,用IR、DSC、TG和WAXD等方法对其进行了分析,研究表明,它们均属非晶态聚合物,其对数比浓粘度均在0.65以上,具有很高的玻璃化温度(Tg=190~258℃)、优异的耐热性和耐溶  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号